
首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comwww.ebpftravel.com

基于eBPF的服务⽹格性能
瓶颈定位与优化

主讲⼈：陈鹏飞
单位：中⼭⼤学
2022-11-12

https://www.ebpftravel.com/
https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com⽬录

01 背景介绍

02 服务⽹格数据⾯优化

03 FaaS数据⾯优化

04 展望

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

背景介绍01

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

!"#$%&'()*+,-(.!/0.!*12!3456789:;,<*=>?@ABCDEF!"#CG
H$%IJKL/MNOP/QMN/RSTUVWX*YZ[\]F

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

连续交付：连续的开发和交
付，减少业务Go-To-Market
的时间

容器：基础使能技术，使开发
和部署软件系统的速度加快

DevOps：新的软件开发模式，
加速软件的开发速度；

微服务：小而精的软件产品，
易于开发、交互和维护；

天下武功，唯快不破！ 世间软件，唯快不赢！

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

引自CNCF《ANNUAL SURVEY 2021》Kubernetes在全球范围内的应用

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化 Kubernetes的流行度

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

Kubernetes 是一个开源的容器编排引擎，用来对容器化应用进行自动化部署、 扩缩和管理。该项目托管在 CNCF。

Kubernetes的架构

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

4 | Copyright © 2019

HOW DO YOU

OBSERVE?
HOW DO YOU

MANAGE APIS?
HOW CAN ENFORCE

SECURITY?

MONOLITH MICROSERVICES

Why you might be interested?

Ø !"#$%&'()*+,-./00123456!789:;2<=>?@,-.2ABC
DEFGHIJKLMNNNO,-.2PQR@-.SA2TEIUVWXYZ[NNO,-.2\]E^JK3,-._
`aaNN@2bbc

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

p ^_`abc;de`QMNCfghij
p klcm>`nB;opdeCIqghij
p QMNfgUrstuUVWXj

Envoy数据面，负责
包过滤和转发；

管理和配置部署Sidecar，
配置流量规则、故障恢复、
重试和熔断

负责身份认证和证书管理的
核心安全组件

配置校验，下
发规则

Ø 服务网格（Service Mesh）

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

Ø Serverless （FaaS）

Knative 工作流

Knative 架构

Knative 是一个典型的基于K8S和Istio的服务器计算平台，能够以事件触发的形式高并发运行Functions

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com云原⽣系统

基于eBPF的服务网格性能瓶颈定位与优化

Ø Dapr (Distributed Application Runtime)

分布式应用运行时，一个事件驱动、可移植的运行时用于云上和边缘计算上构建微服务。

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

Ø vw\x yvz{v|}v}~wv��v�v�~\���v{~x��{v��;���|�z��:������/��C����+C�,;���
��C��-�� ¡¢£>¤¥¦F§E¨�©��|�z��ª«¬;­®¯C�O°/±²*��³´µ¶·¸F

eBPF

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comeBPF

基于eBPF的服务网格性能瓶颈定位与优化

就像宇宙中的“虫洞”提供一条一个时空到达另一个时空的捷径，eBPF是操作系统用户空间和内核空间的“虫洞”

宇宙“虫洞” 内核“虫洞”

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

基于eBPF的服务网格性能瓶颈定位与优化
17

Ø eBPF正在努力让操作系统内核可编程化，成为云原生时代软件系统的“瑞士军刀”；

系统安全

系统可观测性

网络优化

协议解析 负载均衡

存储系统优化混沌工程

eBPF

eBPF遇上Service Mesh会发生什么？

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

服务⽹格数据⾯优化02

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

基于eBPF的服务网格性能瓶颈定位与优化
19

服务⽹格数据⾯优化

❶ 基于K8S的容器管理平台产生了多层复杂的虚拟网络，网络栈复杂度增加，延长了端到端的请求处理时间

Ø 性能问题

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

基于eBPF的服务网格性能瓶颈定位与优化
20

服务⽹格数据⾯优化

❷ Sidecar的引入增加了请求在网络协议栈传输路径，增加了延迟;

❸ Iptables的线性搜索增加了请求延迟；

❹ Sidecar中请求频繁的用户态与内核态之间的切换增加了请求延迟；

Ø 性能问题

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 性能问题

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 性能剖析

p 以 Isitio 提 供 的
BookInfo 作 为
Benchmark；

p 跟踪请求的指向性
过程以及涉及到的
系统调用；

p 观察请求延迟在内
核中的分布；

p 结 论 ： 请 求 在
envoy网络协议栈
中的时延较长；

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Latency distribution of requests in Bookinfo.

Figure 5: The overall architecture of our system.

Our optimization based on eBPF is shown in figure 3(d) and 3(c).
It shortens the communication between proxies and the communi-
cation between proxies and service instances and then reduces tail
latency. Next, we will show more details.

5.2 Intra-pod Optimization
5.2.1 Socket redirection. The intra-pod optimization focuses on re-
ducing the time of packet filtering to reduce tail latency.

eBPF has some hooks as well as some types of programs at the
socket layer. A SOCK_OPS program is attached to some hooks
of sockets, such as connection establishment, retransmission time-
out. If those operations happen, we can obtain the information of
sockets. A SK_MSG program is triggered to execute when the sys-
tem calls such as sendmsg() or sendfile() are called. We can do the
socket redirection in a SK_MSG program. eBPF provides a helper

Table 1: Information of sockets when requests once.

socket source(ip:port) destination(ip:port)
(1) 172.20.2.132:35484 10.68.241.231:9080
(2) 127.0.0.1:15001 172.20.2.132:35484
(3) 172.20.2.132:52944 172.20.2.134:9080
(4) 172.20.2.134:15006 172.20.2.132:52944
(5) 127.0.0.1:36709 127.0.0.1:9080
(6) 127.0.0.1:9080 127.0.0.1:36709

function called bpf_msg_redirect_hash() to achieve socket redirec-
tion. This function needs a SOCKHASH to do socket redirection.
This function can directly forward packets from the current socket
to peer socket indexed by the key stored in SOCKHASH, without
passing through the TCP/IP stack and iptables filtering rules. We
use the current socket’s quadruple information as the key, that is,
source address, source port, destination address and destination
port.

5.2.2 Workflow after optimization. Table 1 shows the information
of established sockets when the client of Pod 1 requests to the
server of Pod 2 in figure 3(a) and 3(b). With socket redirection pro-
vided by eBPF, we optimize the process I in figure 3(a) and 3(b) by
attaching SOCK_OPS and SK_MSG programs on each node.

The optimization with socket redirection is shown in figure 3(f).
The SOCK_OPS program is responsible for updating SOCKHASH.
When a socket sends SYN and ACK for SYN, it obtains the quadru-
ple information of current socket as a key and current socket as
a value, then calls the bpf_sock_hash_update function to updates
the SOCKHASH.

6

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 性能剖析

Latency (us) CPU Usage (Virtual Cores)

TCP HTTP gRPC TCP HTTP gRPC

IPC 11.59 (30%) 12.75 (8%) 13.04 (7%) 0.49 (15%) 0.51 (5%) 0.55 (4%)
Read 8.14 (16%) 9.01 (5%) 9.37 (5%) 0.26 (8%) 0.29 (3%) 0.30 (2%)
Write 13.22 (34%) 13.80 (8%) 14.35 (7%) 0.45 (14%) 0.48 (5%) 0.57 (4%)

Notification 1.33 (3%) 1.27 (1%) 1.35 (1%) 0.26 (8%) 0.27 (3%) 0.26 (2%)
Protocol Parsing - 117.35 (70%) 142.38 (73%) - 6.00 (62%) 9.76 (71%)
Protocol Other 4.25 (11%) 13.07 (8%) 14.39 (7%) 1.79 (55%) 2.09 (22%) 2.34 (17%)

Total 38.63 167.25 194.79 3.25 9.65 13.79

Table 2: Contribution of different components to the overhead of a single sidecar instance in different protocol modes. The
numbers report both inbound and outbound overheads.

Latency(us) Virtual Cores

Fault Injection 5.74 (3.1%) 0.20 (1.9%)
Rate Limit 8.19 (4.5%) 0.21 (2.0%)

Tap 156.09 (85.0%) 2.95 (8.0%)
Lua 80.59 (43.9%) 3.18 (30.2%)

WebAssembly 26.30 (14.3%) 0.69 (6.6%)

Table 3: Latency overhead of five filters. The percentage in
parentheses denotes the additional overhead atop baseline
HTTP mode (without any filters).

no-op) and, as assumed by MeshInsight, validate that their
overhead is additive.

We study five different filters, covering all three ways to
write an Envoy filter: 1) Fault Injection: a built-in, C++ filter
that helps test the resilience to communication failures; 2)
(Local) Rate Limit: a built-in, C++ filter that rate limits traffic
to a service instance. 3) Tap (File): a built-in, C++ that records
traffic and is configured to log to a file; 4) Lua: a custom, no-
op filter written as a Lua script; 5) WebAssemtly: a custom,
no-op filter written as a WebAssembly module. We add these
filters on Envoy configured in HTTP mode.

Table 3 shows the overhead of each filter inferred by
MeshInsight when subjected to the same workload as the pre-
vious section (100 byte messages, 30K request per second).
We see that different filters have widely different overheads.
The baseline overhead of C++ filter is low, as evidenced by
the low overhead of Fault Injection and Rate Limit filters.
The high overhead of Tap (file) is high because of its inter-
action with the file system. On the other head, even no-op
Lua or WebAssembly filters have substantial latency and CPU
overheads, with Lua being 3x more expensive for latency and
nearly 5x more expensive for CPU.

To study the composability of filters, we consider five differ-
ent filter configurations, each with a different way to combine
filter types: 1) CC: combines all three types of C++ filters;
2) CLW combines the Lua and WebAssembly filters; 3) CCL:
combines the Lua filter with all three C++ filters; 4) CCW :
combines the WebAssembly filter with all three C++ filters;

(a) Latency. (b) CPU Usage.

Figure 9: Prediction results of different filters configurations.

and 5) CCLW : combines all five filters.
Figure 9 shows both predicted and measured overheads of

each of these combinations. The measured overhead denotes
latency and CPU usage with the filters minus that without the
filters. We see that filter combination overheads can be quite
high when multiple expensive filters are employed (something
that the developers must avoid). We also see the predictions
of MeshInsight, based on adding individual overheads on top
of base HTTP proxy overhead in Table 3, are quite accurate.

5.5 Impact of Message Size and Rate
We now characterize the impact of message size and rate. We
will show that, consistent with our modeling assumptions, the
overhead increases with each of these factors. To study the
impact of message size, we vary it from 100 bytes to 16KB.
The upper end of this range is well beyond the maximum size
that we directly profile (4KB). To study the impact of message
rate, we vary it from 10K to 50K requests per second.

Latency Figure 10 plots latency overhead for HTTP proxy
without filters. The latency increase is similar for other pro-
tocols. We see that latency overhead increases slowly with
message size. Going from 100 bytes to 16 KB (which repre-
sents a very large message), the latency overhead increases
by 53 ms. This increase represents only a 30% increase for
HTTP. The presence of filters does not significantly change
the impact of message size on latency, as most filters operate

9

引自论文《Dissecting Service Mesh Overheads》

Sidecar带来的延时和CPU开销

Sidecar中不同的组件对不同协议的延迟贡献

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 解决方案

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Latency distribution of requests in Bookinfo.

Figure 5: The overall architecture of our system.

Our optimization based on eBPF is shown in figure 3(d) and 3(c).
It shortens the communication between proxies and the communi-
cation between proxies and service instances and then reduces tail
latency. Next, we will show more details.

5.2 Intra-pod Optimization
5.2.1 Socket redirection. The intra-pod optimization focuses on re-
ducing the time of packet filtering to reduce tail latency.

eBPF has some hooks as well as some types of programs at the
socket layer. A SOCK_OPS program is attached to some hooks
of sockets, such as connection establishment, retransmission time-
out. If those operations happen, we can obtain the information of
sockets. A SK_MSG program is triggered to execute when the sys-
tem calls such as sendmsg() or sendfile() are called. We can do the
socket redirection in a SK_MSG program. eBPF provides a helper

Table 1: Information of sockets when requests once.

socket source(ip:port) destination(ip:port)
(1) 172.20.2.132:35484 10.68.241.231:9080
(2) 127.0.0.1:15001 172.20.2.132:35484
(3) 172.20.2.132:52944 172.20.2.134:9080
(4) 172.20.2.134:15006 172.20.2.132:52944
(5) 127.0.0.1:36709 127.0.0.1:9080
(6) 127.0.0.1:9080 127.0.0.1:36709

function called bpf_msg_redirect_hash() to achieve socket redirec-
tion. This function needs a SOCKHASH to do socket redirection.
This function can directly forward packets from the current socket
to peer socket indexed by the key stored in SOCKHASH, without
passing through the TCP/IP stack and iptables filtering rules. We
use the current socket’s quadruple information as the key, that is,
source address, source port, destination address and destination
port.

5.2.2 Workflow after optimization. Table 1 shows the information
of established sockets when the client of Pod 1 requests to the
server of Pod 2 in figure 3(a) and 3(b). With socket redirection pro-
vided by eBPF, we optimize the process I in figure 3(a) and 3(b) by
attaching SOCK_OPS and SK_MSG programs on each node.

The optimization with socket redirection is shown in figure 3(f).
The SOCK_OPS program is responsible for updating SOCKHASH.
When a socket sends SYN and ACK for SYN, it obtains the quadru-
ple information of current socket as a key and current socket as
a value, then calls the bpf_sock_hash_update function to updates
the SOCKHASH.

6

优化的基本思路

p 使用eBPF sock_ops中的redirect能力实现节点内socket数据直通；

p 使用TC/XDP redirect实现跨节点的网络接口直通；

TC/XDP redirect

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 解决方案

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Tail Latency Optimization in Service Mesh Based on eBPF Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(a) Pod communication within one node. (b) Pod communication across different nodes. (c) Optimized pod communication across nodes.

(d) Optimized pod communication within one node. (e) The workflow of eBPF. (f) The workflow of socket redirection.

Figure 3: The workflows of communication in nodes before and after optimization, eBPF and socket redirection.

the Server is not deployed on Node 1, it is forwarded by Flannel.
Encapsulated in UDP, the packet is forwarded to the physical NIC
eth0 of Node 1 and then received by the physical NIC of Node 2.
After that, it is forwarded to Flannel.1 vNIC, cni0 then veth2.

Packets transmitted between containers and proxies in a pod is
required to pass through the TCP/IP stack and iptables packet fil-
tering rules. Iptables match filtering rules for a chain, which has
a certain impact on packet transmission performance. In a service
mesh, because of proxies, packets transmitted between pods con-
sume more time when passing the TCP/IP stack and iptables chain
rules, leading to the latency increase.

4.2 Latency Analysis
To understand the latency distribution of packet transmission in Is-
tio after the analysis in Section 4.1, we first attaches custom eBPF
programs on the corresponding kernel probe of important system
calls called when packets are sent and received, and then obtain
packets latency distribution of the Bookinfo application (see fig-
ure 4). Our experimental environment and tools are introduced in
Section 6.

As can be seen in figure 4, for cross-node requests, the commu-
nication between pods consumes a lot on latency. That is because
packets must pass through the physical NIC, consumingmore time
than that only pass through the bridge on the same node. Focused
on the highlighted area in the middle, it can be observed that it
has a great impact on latency when proxies obtains packets from
the physical NIC and performs Netfilter filtering. Finally, we ana-
lyze the other time-consuming regions of figure 4. Reasons for long

latency are the long time for packet coping in the socket buffer be-
tween user space and kernel space as well as the time for server to
process packets. Based on our observation, the unpredictable com-
munication time between nodes, queuing time when doing Netfil-
ter filtering as well as the time for packets coping all have a great
impact on tail latency.

5 OPTIMIZATION
Based on the analysis in Section 4, to reduce tail latency in a service
mesh, it is necessary to reduce the time of communication across
nodes, packets filtering and copying. eBPF allows us to accelerate
the packet transmission. This section describes our optimization
with eBPF in detail. Optimizing the data plane of Istio at the socket
layer and at traffic control layer helps reduce tail latency.

5.1 Architecture
The overall architecture of our work is shown in Figure 5. Opti-
mizer uses eBPF to optimize the data plane of Istio and accelerate
the packet transmission. Socket redirection and redirection at traf-
fic control layer can help to optimize the communication between
service instances and proxies and communication between proxies.
Then we run benchmarks with a load generator in Istio to see the
efficiency of the optimization. Here, Meshery[20] is used as a load
generator to perform performance benchmarks in Istio. After load
generation, collector collects the tail latency before and after op-
timization as well as the CPU and memory usage to find out how
well our optimization method works.The experimental results and
analysis are shown in Section 6.

5

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Tail Latency Optimization in Service Mesh Based on eBPF Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(a) Pod communication within one node. (b) Pod communication across different nodes. (c) Optimized pod communication across nodes.

(d) Optimized pod communication within one node. (e) The workflow of eBPF. (f) The workflow of socket redirection.

Figure 3: The workflows of communication in nodes before and after optimization, eBPF and socket redirection.

the Server is not deployed on Node 1, it is forwarded by Flannel.
Encapsulated in UDP, the packet is forwarded to the physical NIC
eth0 of Node 1 and then received by the physical NIC of Node 2.
After that, it is forwarded to Flannel.1 vNIC, cni0 then veth2.

Packets transmitted between containers and proxies in a pod is
required to pass through the TCP/IP stack and iptables packet fil-
tering rules. Iptables match filtering rules for a chain, which has
a certain impact on packet transmission performance. In a service
mesh, because of proxies, packets transmitted between pods con-
sume more time when passing the TCP/IP stack and iptables chain
rules, leading to the latency increase.

4.2 Latency Analysis
To understand the latency distribution of packet transmission in Is-
tio after the analysis in Section 4.1, we first attaches custom eBPF
programs on the corresponding kernel probe of important system
calls called when packets are sent and received, and then obtain
packets latency distribution of the Bookinfo application (see fig-
ure 4). Our experimental environment and tools are introduced in
Section 6.

As can be seen in figure 4, for cross-node requests, the commu-
nication between pods consumes a lot on latency. That is because
packets must pass through the physical NIC, consumingmore time
than that only pass through the bridge on the same node. Focused
on the highlighted area in the middle, it can be observed that it
has a great impact on latency when proxies obtains packets from
the physical NIC and performs Netfilter filtering. Finally, we ana-
lyze the other time-consuming regions of figure 4. Reasons for long

latency are the long time for packet coping in the socket buffer be-
tween user space and kernel space as well as the time for server to
process packets. Based on our observation, the unpredictable com-
munication time between nodes, queuing time when doing Netfil-
ter filtering as well as the time for packets coping all have a great
impact on tail latency.

5 OPTIMIZATION
Based on the analysis in Section 4, to reduce tail latency in a service
mesh, it is necessary to reduce the time of communication across
nodes, packets filtering and copying. eBPF allows us to accelerate
the packet transmission. This section describes our optimization
with eBPF in detail. Optimizing the data plane of Istio at the socket
layer and at traffic control layer helps reduce tail latency.

5.1 Architecture
The overall architecture of our work is shown in Figure 5. Opti-
mizer uses eBPF to optimize the data plane of Istio and accelerate
the packet transmission. Socket redirection and redirection at traf-
fic control layer can help to optimize the communication between
service instances and proxies and communication between proxies.
Then we run benchmarks with a load generator in Istio to see the
efficiency of the optimization. Here, Meshery[20] is used as a load
generator to perform performance benchmarks in Istio. After load
generation, collector collects the tail latency before and after op-
timization as well as the CPU and memory usage to find out how
well our optimization method works.The experimental results and
analysis are shown in Section 6.

5

单节点上pod->proxy以及proxy->proxy的网络传输栈

p 单节点网络优化方法

单节点网络优化结果

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 解决方案

p 单节点网络优化方法

Ø 套接字重定向

p sock_ops 程序附加到套接字连接建立的钩子点，获取套接字选
项信息，更新socket_hash

p sk_msg程序在socket_hash中的socket进行sendmsg系统调
用时被触发执行，完成套接字重定向工作，进行数据包转发。

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 解决方案

p 单节点网络优化方法

跨节点proxy->proxy的网络传输 跨节点proxy->proxy的优化结果

利用DPDK用户态协议栈实现CPU Bypass也可加速，比如网易方案

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 解决方案

p套接字重定向

p 对部署在相同节点上的pod间通信优化
pTC层重定向

p 对部署在不同节点上的pod间通信优化

p Traffic Control（简称 TC）是 Linux 负责流量控制的模块，通过在网卡设备上建立队列规则，建
立数据包队列，定义队列中数据包的发送方式，从而实现流量控制

p TC 中的队列规则类型 clsact 可作为钩子点挂载用户自定义的 eBPF 程序。Ingress 处理入口流量，
Egress 处理出口流量。

p 将数据包重定向到另一个网卡设备上，以此实现包转发

替换成XDP_redirect实现

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 测试方案

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) The architecture of Bookinfo.

(b) The architecture of Histershop.

Figure 6: The architectures of two benchmarks, namely
Bookinfo (a) and Hipstershop(b)

twoworker nodes, with an Istio servicemesh deployed, hosting the
Bookinfo application officially provided by Istio and the Hipster
Shop application provided by Google as examples.

6.1.1 Applications. Bookinfo shows information about a book, in-
cluding its description, details such as ISBN and comments about
it. It comprises four services. Productpage service asks for Detail
and Reviews services to generate a web page. Detail service stores
details of books. Reviews service generates book reviews whose
versions v2 and v3 ask Ratings for books’ ratings. Hipster[15] sim-
ulates E-commerce services. When we access the Frontend, it will
ask Adservice, Currency, Cart, Recommendation and Productcata-
log for details to generate a web page. Figure 6 shows the deploy-
ment of those applications on nodes. Solid lines represent actual
service invocation in benchmarks. Dashed lines represent the in-
vocations existing in Hipster but not carried out in benchmarks.

6.1.2 Meshery. For different applications and infrastructures, users
need to compare their separate behaviors from servicemesheswhen
selecting a service mesh to deploy. Meshery [20] is a reliable behav-
ior analysis tool for different service meshes. Meshery manages
service meshes by interacting them with corresponding adapters.
Meshery allows users tomodify the configuration of adapters, such
as their type, name, exposed port and so on. Users can define their
own benchmark configuration, such as the duration, concurrency,
type of load generator and so on, through the meshery UI, mesh-
eryctl commands or a script. Once users submit a benchmark con-
figuration to the Meshery server, Meshery will automatically run a
benchmark with the specified load generator and collect data then
return to users. With the help of Meshery, we run benchmarks in
Istio to test the effectiveness of the optimization.

6.1.3 Service capacity. Before our experiments, we first need to
find out the service capacity of Bookinfo. Then We test the P99
of service response time under different target QPS with different
concurrency. As shown in Figure 7(a), the largest target QPS is
100 and an obvious turning point happens at 70 QPS.Therefore, we
consider the case that QPS larger than 70 QPS as a high workload
while the other case as a low workload.

6.2 Evaluation Under LowWorkload
To know the effectiveness of optimization method we proposed,
we first run benchmarks under a low workload for thirty seconds
with 50 target QPS setted in four situations, namely the original ser-
vice mesh, only for intra-pod communication optimization, only
for inter-pod communication optimization, and the combined op-
timization.

Here, we focus on the tail latency of request response time. Fig-
ure 7(b) draws the average of P99, where the error bars reflect the
standard variance. P99 represents the response time of 99% of the
requests and accurately reflects the tail latency of requests.

As seen in Figure 7(b) , the inter-pod communication optimiza-
tion is similar to intra-pod communication optimization. The com-
bined optimization achieves the best result. For a packet, the inter-
pod communication optimization method reduces two iptables fil-
tering operations. While the inter-pod communication eliminates
iptables filtering when the packet is forwarded on the same node
and bridge forwarding when forwarded on different nodes. We can
also see that the optimization works well when processing five
users concurrently with 50 target QPS. It reduces tail latency to
four-fifths of the original service mesh.

6.3 Evaluation Under High Workload
We run benchmarks under a high load with the target QPS set to
100. By default, the concurrency of proxy in Istio is set as 2, which
means that a proxy can only handle 2 requests concurrently. It does
not make sense when we manually modify that value since it is
related to the resources of CPU and memory.

Figure 7(c) shows the tail latency of different connections when
we run benchmarks on Bookinfo andHipstershop.We compare our
optimization with merbridge[2] which is proposed to accelerate
Istio. For Bookinfo, it can be observed that when the number of
connection is less than twenty. The optimized tail latency of our
proposed method is better than merbridge. Our method reduces
about half of tail latency when the connection is 1, then 22% when
the connection is 5, and then 5% with 10 connections. However,
merbridge reduces just 1ms in those cases. When the connection
increases to 100 and 125, our method and merbridge only achieve
very tiny performance improvement. With 100 connections, our
optimization makes the tail latency 2% longer than the original
service mesh, while merbridge makes it 1% longer. Actually, when
the number of connections reaches 125, there is no optimization
any more for both of out method and merbridge.

For Hipstershop, our experimental result is similar as that of
Bookinfo. We run benchmarks with 30 target QPS that is larger
than it can serve. When the connection is set to 1, our optimization
improves performance about one-fifth of the original service mesh,
while merbridge makes even no improvement. As the number of

8

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) The architecture of Bookinfo.

(b) The architecture of Histershop.

Figure 6: The architectures of two benchmarks, namely
Bookinfo (a) and Hipstershop(b)

twoworker nodes, with an Istio servicemesh deployed, hosting the
Bookinfo application officially provided by Istio and the Hipster
Shop application provided by Google as examples.

6.1.1 Applications. Bookinfo shows information about a book, in-
cluding its description, details such as ISBN and comments about
it. It comprises four services. Productpage service asks for Detail
and Reviews services to generate a web page. Detail service stores
details of books. Reviews service generates book reviews whose
versions v2 and v3 ask Ratings for books’ ratings. Hipster[15] sim-
ulates E-commerce services. When we access the Frontend, it will
ask Adservice, Currency, Cart, Recommendation and Productcata-
log for details to generate a web page. Figure 6 shows the deploy-
ment of those applications on nodes. Solid lines represent actual
service invocation in benchmarks. Dashed lines represent the in-
vocations existing in Hipster but not carried out in benchmarks.

6.1.2 Meshery. For different applications and infrastructures, users
need to compare their separate behaviors from servicemesheswhen
selecting a service mesh to deploy. Meshery [20] is a reliable behav-
ior analysis tool for different service meshes. Meshery manages
service meshes by interacting them with corresponding adapters.
Meshery allows users tomodify the configuration of adapters, such
as their type, name, exposed port and so on. Users can define their
own benchmark configuration, such as the duration, concurrency,
type of load generator and so on, through the meshery UI, mesh-
eryctl commands or a script. Once users submit a benchmark con-
figuration to the Meshery server, Meshery will automatically run a
benchmark with the specified load generator and collect data then
return to users. With the help of Meshery, we run benchmarks in
Istio to test the effectiveness of the optimization.

6.1.3 Service capacity. Before our experiments, we first need to
find out the service capacity of Bookinfo. Then We test the P99
of service response time under different target QPS with different
concurrency. As shown in Figure 7(a), the largest target QPS is
100 and an obvious turning point happens at 70 QPS.Therefore, we
consider the case that QPS larger than 70 QPS as a high workload
while the other case as a low workload.

6.2 Evaluation Under LowWorkload
To know the effectiveness of optimization method we proposed,
we first run benchmarks under a low workload for thirty seconds
with 50 target QPS setted in four situations, namely the original ser-
vice mesh, only for intra-pod communication optimization, only
for inter-pod communication optimization, and the combined op-
timization.

Here, we focus on the tail latency of request response time. Fig-
ure 7(b) draws the average of P99, where the error bars reflect the
standard variance. P99 represents the response time of 99% of the
requests and accurately reflects the tail latency of requests.

As seen in Figure 7(b) , the inter-pod communication optimiza-
tion is similar to intra-pod communication optimization. The com-
bined optimization achieves the best result. For a packet, the inter-
pod communication optimization method reduces two iptables fil-
tering operations. While the inter-pod communication eliminates
iptables filtering when the packet is forwarded on the same node
and bridge forwarding when forwarded on different nodes. We can
also see that the optimization works well when processing five
users concurrently with 50 target QPS. It reduces tail latency to
four-fifths of the original service mesh.

6.3 Evaluation Under High Workload
We run benchmarks under a high load with the target QPS set to
100. By default, the concurrency of proxy in Istio is set as 2, which
means that a proxy can only handle 2 requests concurrently. It does
not make sense when we manually modify that value since it is
related to the resources of CPU and memory.

Figure 7(c) shows the tail latency of different connections when
we run benchmarks on Bookinfo andHipstershop.We compare our
optimization with merbridge[2] which is proposed to accelerate
Istio. For Bookinfo, it can be observed that when the number of
connection is less than twenty. The optimized tail latency of our
proposed method is better than merbridge. Our method reduces
about half of tail latency when the connection is 1, then 22% when
the connection is 5, and then 5% with 10 connections. However,
merbridge reduces just 1ms in those cases. When the connection
increases to 100 and 125, our method and merbridge only achieve
very tiny performance improvement. With 100 connections, our
optimization makes the tail latency 2% longer than the original
service mesh, while merbridge makes it 1% longer. Actually, when
the number of connections reaches 125, there is no optimization
any more for both of out method and merbridge.

For Hipstershop, our experimental result is similar as that of
Bookinfo. We run benchmarks with 30 target QPS that is larger
than it can serve. When the connection is set to 1, our optimization
improves performance about one-fifth of the original service mesh,
while merbridge makes even no improvement. As the number of

8

p 选择BookInfo和Hipstershop作为Benchmark

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 测试方案
p Meshery作为测试工具

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 测试结果
929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Tail Latency Optimization in Service Mesh Based on eBPF Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

10 30 50 70 100

target QPS

0

300

600

900

1200

1500

1800

2100

P
9
9
(m

s
)

1 connection

5 connections

10 connections

20 connections

100 connections

125 connections

(a) Service capacity of the Bookinfo application. (b) Benchmark results under low load.

1 510 20 100 125

connections

0

300

600

900

1200

1500

1800

2100

P
9

9
(m

s
)

bookinfo-combined opt.

bookinfo-without opt.

bookinfo-merbridge

hipster-combined opt.

hipster-without opt.

hipster-merbridge

(c) Benchmark results under high load.

Figure 7: The service capacity of Bookinfo and tail latency under different loads.

1 5 9 13 17 21 25 29 33

time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

M
e
m

o
ry

 u
s
a
g

e
 o

f
W

o
rk

e
rs

(K
B

)

node1-without opt.

node1-combined opt.

node2-without opt.

node2-combined opt.

(a) Memory usage on nodes.

1 5 9 13 17 21 25 29 33

time

0

5

10

15

20

25

30

35

40

C
P

U
 u

s
a
g

e
 o

f
W

o
rk

e
r

1
(%

)

without opt.-user

without opt.-sys

combined opt.-user

combined opt.-sys

(b) CPU utilization on Kubernetes-node1.

1 5 9 13 17 21 25 29 33

time

0

5

10

15

20

25

30

C
P

U
 u

s
a
g

e
 o

f
W

o
rk

e
r

2
(%

)

without opt.-user

without opt.-sys

combined opt.-user

combined opt.-sys

(c) CPU utilization on Kubernetes-node2.

Figure 8: CPU and memory usage in nodes when running a benchmark under low load.

connection increases to 10, our method shortens 12% of the tail
latency while merbridge shortens about 16% of that.

We know from figure 7(c) that as the connection increases, the
improvement on tail latency of our optimization and merbridge is
gradually reduced. Because of the concurrency limitation of prox-
ies, when more connections arrive, packets are more likely to accu-
mulate thus increase the time of queuing, which increases the tail
latency and makes the number of connection have a great impact
on the performance of our optimization and merbridge. Compared
with merbridge, our optimization method works better with small
connection. When the number of connection becomes larger, our
optimization method performs similarly to merbridge.

6.4 Overhead
Here, we run the benchmark introduced in section 6.2 and eval-
uate the overhead introduced by our optimization. We record the
average CPU usage of workers during the benchmark, as shown in
figure 8(b) and 8(c), where the benchmark starts at the 2nd second
and end at the 30th second.

Observing Figure 8(b) and 8(c), during the benchmark, the vari-
ation of CPU utilization in both kernel space and user space before
and after optimization is almost the same for workers, that is, our
proposed method will not introduce extra overhead of CPU.

We also focus on the use of memory when running the bench-
mark. In figure 8(a), the optimization of memory on Kubernetes-
node1 is significant. During the benchmark, the memory we used
without optimization is 2.827MBmore than that before benchmark
on average, while thatwith combined optimization is 1.59MB, about
40% improvement. For Kubernetes-node2, the used memory is re-
duced a little. That is the used memory was reduced when improv-
ing the tail latency. It can be seen that our optimization method
reduce the use of memory by about 20% on average. It can also be
seen from figure 8(a) that the used memory changes more stably
with the combined optimization.

The memory usage is reduced because of the reduction of copy-
ing packets between the network card and the Linux kernel. When
a packet arrives at the network card and accepted by the kernel,
Linux stores that packet in its memory. Since our optimization
method bypasses the transmission at the network card, it reduces
the memory copying thus the memory used.

6.5 Discussion
Experimental results above show the effectiveness of our optimiza-
tion method. However, there is something that can be improved
and the future work can be carried out.

Experiments are based on Bookinfo andHipstershop. Compared
with existing large-scale microservice systems, it is hard to know

9

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 测试结果

README.md 2022/8/10

10 / 11

$ fortio load -c ${CONCURRENCY} -n ${TOTAL_REQUESTS} -qps 0
http://192.168.88.16:9080/productpageREADME.md 2022/8/10

11 / 11

基
础
测
试

优
化
测
试

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

SoCC ’20, October 19–21, 2020, Virtual Event, USA Marios Kogias, Rishabh Iyer, and Edouard Bugnion

rich, stateful scheduling policies while rapidly adjusting to
changes in the service set, adding minimum latency over-
head to the application, not creating I/O bottlenecks, and
avoiding broken connections. State-of-the-art internal load
balancers have bene�ted from recent innovation in protocol
design speci�cally aimed at improving their scalability, in-
cluding transport protocols other than TCP [33, 38, 45]. Such
approaches though, break backwards compatibility with ex-
isting applications, while TCP still remains prevalent both
for datacenter [2] and cloud communications. We note that
this problem statement is di�erent from that of external load
balancers, who must accept and �lter standards-based traf-
�c from the Internet, mostly deal with HTTP(S) tra�c and
might also implement TLS termination.
Our approach bypasses the load balancer without regret.

Speci�cally, we remove the load balancer from the critical
path as much as possible and o�er close to direct commu-
nication latencies. At the same time, our design allows for
elaborate load balancing policies that improve tail-latency
and quickly react to changes in the service set.

We design CRAB, a Connection Redirect LoAd Balancer.
CRAB depends on a new TCP option included in the SYN

and SYN-ACK packets that enables tra�c redirection. This
allows CRAB to only deal with SYN packets and stay o� the
connection datapath, thus tremendously reducing the load
balancing load, while still being able to implement complex
load balancing policies that otherwise would require a state-
ful load balancer implementation.

Our implementation shows that CRAB’s datapath can be
easily implemented in a programmable switch or in software
using kernel-bypass or kernel-based mechanisms. The CRAB
implementation in clients and servers requires a modest
change; this can be implemented in a kernel module that has
no measurable impact on performance or as direct kernel
modi�cations o�ered as pre-built images to cloud tenants.

Our evaluation demonstrates that CRAB outperforms L4-
based load-balancers in terms of added latency overhead,
connection throughput, and load balancing policies while
being implemented on top of a simple stateless design.
Our contributions are:

• The design of a backward-compatible extension to RFC
791 [50] that enables TCP connection redirection
• The design of a CRAB load balancer that depends on the
new connection redirect feature of TCP and supports �exible
scheduling policies.
• The implementation of the TCP connection redirection
option in the Linux kernel for both clients and servers. Four
implementations of the load balancer using P4, DPDK, eBPF
and Net�lter.
• A discussion on the caveats, assumptions, and opportu-
nities for CRAB in the public cloud and the integration of
CRAB for Kubernetes NodePort load balancing.

Browsers

Datacenter

LB LB

Web 1

Web 2

Back 1

Back 2

Back 3

Figure 1: Sample 2-tier cloud application. Web servers
handle web tra�c coming from users’ browsers and
act as clients for the back-end servers that run the ap-
plication logic and communicatewith amanaged data-
base. The light green octagon is an external load bal-
ancer while the dark green one is an internal load bal-
ancer.

The end-point CRAB implementation and the source code
for the di�erent CRAB load balancers can be found here 1.

2 MOTIVATION AND BACKGROUND
In this section, we �rst showcase the problemwe aim to solve
and quantify the potential bene�ts CRAB can achieve. Then,
we provide a comparative description of the state-of-the-art
in load balancing that drives our design.

To begin, we run a simple experiment on the public cloud
which mimics a scenario that many applications encounter
today. We deploy two VMs on Microsoft Azure [5], one act-
ing as a client and the other as a server both con�gured with
accelerated networking [6]. Further, we place the server VM
behind an Azure internal load balancer. In this setup, the
client VM corresponds to the web tier and the server VM cor-
responds to the back-end tier from Figure 1. As benchmarks,
we run a custom implementation of Netperf’s CRR and
RR benchmarks [63]. The CRR (Connect-Request-Response)
benchmark measures the latency to open a connection, send
an 8-byte payload, and wait for the server to echo the same
payload. On receiving the response, the client closes the con-
nection and starts over. In the RR (Request-Response) bench-
mark clients establish connections once and then use the
same connection to send all their requests. RR measures the
time between sending an 8-byte request and receiving the
echoed back 8-byte response. Both experiments operate in
a closed loop with one connection and one outstanding re-
quest at a time. Both the client and the server applications
run on the vanilla kernel-based networking stack.
Figure 2 illustrates the 99th percentile observed latency

for the CRR and RR experiments with and without the load
balancer. Naturally, the latency for direct communication is

1
https://github.com/epfl-dcsl/crab

194

Ø 负载均衡优化

Bypassing the Load Balancer Without Regrets SoCC ’20, October 19–21, 2020, Virtual Event, USA

Direct Load Balanced

0 1000 2000 3000 4000 5000

99-th Latency (us)

CRR

RR

Figure 2: Connection-Request-Response (CRR) and
Request-Response (RR) latency benchmarks onAzure
with accelerated networking with and without an
Azure internal load balancer

lower than the load-balanced scenario. However, the latency
overhead introduced by the load balancer is signi�cant for
both the RR and the CRR benchmarks. The load balancer
adds approximately 1ms and 2ms respectively for the RR and
CRR benchmarks; such a large overhead can overshadow the
cost of non-balanced RPC.
Given this signi�cant latency overhead associated with

internal cloud load balancing, our goal is to minimize it
as much as possible to achieve latencies that are close to
direct communication. To do so, we need to understand the
underlying load balancing mechanisms and policies.

2.1 Load Balancing Flavors
In this section, we categorize and compare the state-of-the-
art approaches to load balancing for internal cloudworkloads
running on top of VMs or containers. Our comparison is
based on the following criteria:
• Load Balancing Policy: Centralized policies leverage
a global view that includes every back-end server while
distributed policies make scheduling decisions based only
on local state.
• Persistent Connection Consistency (PCC): Can the
load-balancer route all packets from the same connection to
the same back-end server in the presence of server arrivals
and failures?
• Expected Load: What is the load balancer load in terms
of the packets it has to process for each connection?
• Latency Overhead: How much overhead does the load
balancer add?
• Updates: How quickly does the load balancer take into
account scale-up (server-arrival) and scale-down (server-
removal) events?

Layer 4 Load Balancing: L4 load balancers operate at the
transport layer (TCP/UDP) of the networking stack and re-
main agnostic to the upper application layers. All public

cloud providers o�er some form of L4 load balancing, ex-
amples include Microsoft’s Azure Load Balancer [8], which
was used for the experiment in Figure 2, and Amazon’s AWS
Network Load Balancer [4]

Figure 3a describes the communication between the client,
load balancer, and back-end servers for an L4 load balancer.
The load balancer listens to a virtual IP (VIP) and the client
uses this IP to talk to the service. The service is run on
back-end servers that listen to some direct IP (DIP). The
load balancer assigns each connection to a particular back-
end server and performs address translation. It modi�es the
destination IP (to the DIP) for packets sent by the client and
the source IP (to the VIP) for packets sent by the server. This
requires all packets to go through the load balancer adding
a latency overhead of 1 RTT to the end-to-end client-server
communication and reducing the I/O scalability of the load
balancer.
An optimization to the above approach is Direct Server

Return (DSR). In this scheme, packets originating at the
server can be sent directly to the client without being routed
through the load balancer. Servers are aware that they are
being load balanced and modify the source IP of outgoing
packets to the VIP using address rewriting mechanisms such
as tc [64]. DSR reduces the load balancer’s load since it now
only processes client packets and reduces the latency over-
head to 0.5 RTT. Figure 3b illustrates an L4 load balancer
with DSR enabled.

There has been signi�cant research [3, 9, 16, 24, 35, 42, 43,
47, 47–49] on L4 load balancers. All these approaches can be
split into two main categories depending on whether or not
they store per-connection state.
Stateless load balancers [3, 47] typically depend on some

form of consistent hashing [34] and daisy chaining to ensure
that packets with the same 5-tuple will always be forwarded
to the same DIP. Relying on hashing to distribute load en-
ables them to eschew per-connection state leading to better
performance and scalability. However, this approach has two
main caveats. First, load balancing policies are limited to
hashing, namely random load balancing; this leads to load
imbalances especially when connections are skewed. Sec-
ond, despite the use of daisy chaining there remain corner
cases during server arrival and removal that lead to PCC
violations [9].

Stateful load balancers maintain per connection state to
correctly route each packet they receive from the client. Fur-
ther, such load balancers can also maintain state about each
back-end server, in order to support more elaborate load
balancing policies such as Join-Shortest-Queue or Power of
two [44]. Such policies cannot be implemented on a stateless
load balancer. While per-connection state eliminates PCC
violations, the state lookups can become a bottleneck when
the number of active connections is large.

195

SoCC ’20, October 19–21, 2020, Virtual Event, USA Marios Kogias, Rishabh Iyer, and Edouard Bugnion

Client

S1

(1)

(2)

S1

S1

LB

(3)
(4)

(a) L4 Load Balancing

Client

S1

(1)

(2)

S1

S1

LB

(3)

(b) L4 Load Balancing with DSR

Client

S1

DNS
(a) (b)

(1)

(2) S1

S1

(c) DNS Load Balancing

S1

S1

S1

Agent

Client
(1)

(2)
(3)

(4)

(d) Agent-based Load Balancing

Figure 3: Commonly used load balancing schemes for cloud services based on VMs or containers.

Method\Property Policy PCC violations Expected load Latency overhead Updates
L4 Central Possible* every packet 1 RTT for every RTT Fast
L4 w/ DSR Central Possible* one way packets 1/2 RTT for every RTT Fast
L7 Central None every packet 1 RTT for every RTT Fast

DNS Central None 1 RPC every
few connections

up to 1RTT
per connection Slow

Local Agent Distributed None every packet none Slow

CRAB Central None SYN packets 1/2 RTT for every
connection establishment Fast

* In stateless L4 load balancers
Table 1: Feature comparison between di�erent deployed load balancing schemes and CRAB.

L7 Load Balancing: L7 load balancers or reverse-proxies
operate at the application layer. These load balancers termi-
nate client connections and open new connections to the
back-end servers. Figure 3a could also describe a L7 load bal-
ancing scheme since all the received and transmitted packets
have to go through the load balancer. However, for L7 load
balancing arrows (1),(4) and (2),(3) would belong to di�erent
TCP connections. Popular open-source L7 load balancers
include NGINX [46] and HAProxy [27]. Cloud providers also
o�er such services, e.g., Amazon’s AWS ALB [4].
L7 load balancers are typically centralized. Terminating

client connections and establishing new ones with back-ends
servers, enables them to avoid PCC violations. Further, op-
erating at the application layer allows such load balancers
to understand L7 protocols, e.g., HTTP; this enables them to
perform �ne-grained request-level load balancing as opposed
to the more coarse-grained connection level load balancing.
However, this results in them depending on complicated soft-
ware that typically run in userspace. This has the correspond-
ing performance implications, in particular a considerable
increase in the latency overhead (we illustrate this in §5.2).

DNS Load Balancing: Another form of load balancing used
both in the public internet as well as by container orchestra-
tors such as Docker Swarm [53], and Mesos [30], depends
on DNS. DNS load balancing relies on the fact that most
clients use the �rst IP address they receive for a domain after

DNS resolution. Typically, the DNS server sends the list of IP
addresses in a di�erent order each time it responds to a new
client, using the round-robin method. As a result, di�erent
clients direct their requests to di�erent servers, e�ectively
distributing the load across the server group. Figure 3c de-
scribes the client, server, and DNS server interactions for a
DNS load balancing scheme. Steps (a)-(b) can be performed
once for several connections (1)-(2).

DNS load balancing, while centralized, is extremely coarse
grained, since it only balances the load at a per-client granu-
larity. Further, to avoid the repeated overhead of DNS reso-
lution and reduce the load on the DNS server, clients cache
DNS entries; once an entry is in the cache, clients and servers
talk directly. Despite its performance bene�ts, caching can
cause severe load imbalance issues. Since clients use the same
target IP until the cached entry expires, the system cannot
mitigate load imbalances during this period. Also, removing
servers from the back-end pool becomes challenging and
slow, since administrators have to wait until every possible
TTL for the associated entries has expired. DNS load balanc-
ing though does not su�er from PCC violations since clients
and servers communicate directly.

Local Load-balancing Agent: This load balancing scheme
is used in Kubernetes [39]. In a Kubernetes cluster, every
node that runs networked containers also runs a local agent

196

集群内部的负载均衡

负载均衡开销

Kube-proxy

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø K8S架构

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 负载均衡优化
Bypassing the Load Balancer Without Regrets SoCC ’20, October 19–21, 2020, Virtual Event, USA

Client
(CIP)

LB
(VIP)

SRC:CIP DST:VIP

SYN
SPORT: 5347
DPORT:8080

SRC:CIP DST:VIP

ACK
SPORT: 5347
DPORT:8080

Server
(DIP)

SRC:CIP DST:DIP

SYN
SPORT: 5347
DPORT:8080

SRC:VIP DST:CIP

SYN-ACK
SPORT: 8080
DPORT:5347

SRC:CIP DST:DIP

ACK
SPORT: 5347
DPORT:8080

(1)

(2)

(3)

(4)
(5)

(a) TCP handshake over a L4 load balancer with DST

Client
(CIP)

LB
(VIP)

SRC:CIP DST:VIP
SYN

SPORT: 5347
DPORT:8080

REDIR_OPT:ON

SRC:CIP DST:DIP

ACK
SPORT: 5347
DPORT:8080

Server
(DIP)

SRC:CIP DST:DIP
SYN

SPORT: 5347
DPORT:8080

REDIR_OPT:VIPSRC:DIP DST:CIP
SYN-ACK

SPORT: 8080
DPORT:5347

REDIR_OPT:VIP

(1)

(2)

(3)

(4)

(b) TCP handshake with connection redirection over CRAB

Figure 5: A load balanced TCP handshake with and without connection redirection. Blue boxes correspond to IP
headers, red boxes correspond to TCP headers.

Client

S1

S1

S1

LB
(a)

(b)
(c)

(1)

(2)

Figure 6: Load Balancing over CRAB using the
Connection Redirect TCP option. Dashed lines in-
dicate connection establishment. Solid lines indicate
data exchange.

fall back to stateless hash-based load balancing, thus remain-
ing compatible with non-CRAB-compliant clients. The load
balancer check if the back-end servers are CRAB-compliant
through the health probes already sent to make sure servers
are up and running.

So, CRAB achieves its design goals as follows: (1) All SYN
packets continue to be routed via the load balancer, allowing
it to implement the centralized policy of its choice without
the limitations of stateless load balancers. (2) Dealing with
only SYN packets and not the actual connection payload, en-
sures that the load balancer is no longer the I/O bottleneck.
(3) Removing the load balancer from the data path elimi-
nates all intermediate network hops to it once connection
establishment is complete. (4) CRAB is backwards compati-
ble with existing network stacks and falls back to stateless
load balancing if the Connection Redirect TCP option is
not supported. (5) After connection establishment clients
talk directly with servers, thus completely eliminating PCC
violations.

4 IMPLEMENTATION
CRAB depends on a custom load balancing middlebox and re-
quires changes to the client and the server endpoints. These
three components can be implemented using di�erent tech-
nologies based on deployment requirements, yet can inter-
operate independent of the implementation. In this section,
we describe the implementations in our current prototype.
We discuss alternatives for both implementation and place-
ment of this functionality in §6.
The deployment target for CRAB is a public cloud IaaS

provider such as Amazon AWS, Microsoft Azure, or Google
Compute Platform. We assume that the provider fully con-
trols the physical infrastructure, but can also control the VM
images that cloud tenants use. Unlike other deployment sce-
narios in whichmodifying the client endpoints is not feasible,
e.g., the internet, clients running on cloud infrastructure can
easily integrate new features by running VM images o�ered
by the cloud provider. This approach of specially modi�ed
could VM images is not new and already used extensively,
e.g., in Azure accelerated networking [7].

4.1 Load Balancing Middlebox
We implement the CRAB middlebox in four di�erent ways
keeping in mind the infrastructure IaaS providers use today
and the fact that they might need to run several load balancer
instances per tenant. We built CRAB middleboxes that rely
on, P4 [11], DPDK [14], eBPF [59], and Net�lter modules [62]
respectively.
We implemented a CRAB load balancer in ⇠300 lines of

P414 that process TCP SYN packets in the To�no [10] data-
plane. Our DPDK-based CRAB implementation depends on a
custom, simple networking stack and the load balancer imple-
mentation consists of ⇠100 lines of C code. Our eBPF-based

199

p 优化后的负载均衡方案，ByPass LB

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com服务⽹格数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 负载均衡优化

Bypassing the Load Balancer Without Regrets SoCC ’20, October 19–21, 2020, Virtual Event, USA

10 15 20 25 30 35 40 45

kRPS

0

2

4

6

8

10

9
9
-t

h
 L

a
te

n
cy

 (
m

s) CRAB-rand

LBL4-DSR

CRAB-rr

Figure 11: Load Balancing 48 single-core servers run-
ning a synthetic service time application with S̄ = 1ms

The goal of the experiment is to validate if CRAB can realize
the bene�ts of the elaborate policies as shown in §2.2.
Figures 11, 12 plot the tail latency vs throughput curves

for the CPU bound and I/O bound applications respectively.
We observe that for both application classes, despite all three
policies achieving the same throughput, CRAB Round-Robin
achieves signi�cantly lower tail-latency. For application pro-
�les with low service time dispersion, the Round-Robin load
balancing policy picks the least loaded server and forward
requests to it without requiring explicit communication be-
tween the load balancer and the server. Thus, CRAB in addi-
tion to eliminating I/O bottlenecks and reducing communi-
cation latencies, supports elaborate load balancing policies,
truly achieving the best of all worlds.

6 DISCUSSION

Port redirection:: In our existing CRAB implementation
we only consider connection redirections based on the target
IP assuming that the load balanced service always runs on
the same port in the back-end servers. The mechanism can
be easily extended to modify the target port, too, in case
this is desirable by including both the IP and port in the
Redirection Option.

Mechanism placement:We implemented connection redi-
rection as part of the Linux kernel assuming the following
deployment models: (1) In the case the kernel patch goes
upstream, newer kernel version will support it. (2) If not,
cloud providers can o�er VM images with the modi�ed ker-
nel which cloud tenants can leverage to bene�t from CRAB.
However, these assumptions are not fundamental to CRAB.
We now discuss how CRAB’s advantages can be retained
with alternative placements of connection redirection that
the client and server kernels remain agnostic to.

0 20 40 60 80 100 120

kRPS

0

500

1000

1500

9
9
-t

h
 L

a
te

n
cy

 (
u
s)

LBL4-DSR

CRAB-rand

CRAB-rr

Figure 12: Load Balancing 48 NGINX servers serving
an 8 kB static �le.

Cloud providers implement engines either in software [13,
20, 41], or in hardware [21] that accelerate their virtual net-
working infrastructure. These engines apply address transla-
tion rules and encapsulate and decapsulate packets. Connec-
tion redirection can be supported by those engines, instead
of the guest kernels. On the client side receiving a SYN-ACK
with the Connection Redirect option will create two new
rules that will perform Source Network Address Translation
(SNAT) for the received packets and Destination Network
Address Translation (DNAT) for transmitted packets respec-
tively. The engine will overwrite the DIP with the VIP in
the received option for incoming packets, and vice-versa
for the transmitted packets. The server-side implementation
will create a short-lived rule on receiving a SYN packet with
the redirection option to echo the option in the outgoing
SYN-ACK. The downside of such an implementation is that it
involves packet modi�cations on the critical path that can
incur performance overheads in a software-based stack. De-
spite the similarities with the agent-based load balancing in
§2, supporting CRAB on the host infrastructure still enables
guests to bene�t from the centralized load balancing policies
and easy and fast updates to the server pool.

Alternative Transports:While we focus only on TCP, here,
we discuss how the core ideas behind CRAB apply to other
connection-oriented transport protocols, in particular QUIC.
QUIC [40] is a low-latency transport protocol designed orig-
inally for HTTPS tra�c.

While QUIC runs over UDP, it still retains the notion of a
connection that is established between a client and a server
after a handshake. QUIC also allows a 0-RTT connection es-
tablishment for endpoints that have already communicated
in the past. After the initial handshake, the connection is asso-
ciated with a ConnectionID that de�nes the connection. Load
balancers use this ConnectionID to forward packets from
the same connection to the correct back-send server [40].
ConnectionIDs also enable seamless connectivity during end-
point migrations (address changes).

203

p 优化后的性能

√ √

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

FaaS数据⾯优化03

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comFaaS数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

29

Networked
Systems Group

Existing approach and its limitations
Building blocks of Serverless Edge Cloud for IoT

Ingress
gateway

FuncIon pod

Queue proxy

User container

Autoscaler

FuncIon pod

Queue proxy

User container

FuncIon pod

Queue proxy

User container
FuncIon pod

Queue proxy

User container

Service
Mesh

IoT devices
Protocol adaptor

Broker Metrics server

Scrape
metrics Scaling decision

Expensive
Constantly

running
"We have to

really be aware of
resource usage…

Knative FaaS平台

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comFaaS数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

36

Networked
Systems Group

Auditing the Overheads of Serverless Computing: KNative
Processing involved in a typical serverless function chain setup: network protocol, copies,
interrupts, context switches etc. abound

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

U
serspace

Kernel space

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 1 2 3 4 4 4 12 15

of ctxt
switches 1 2 3 4 4 4 12 15

of irqs 3 4 7 6 6 6 18 25

of proto.
processing 1 2 3 3 3 3 9 12

of
serialization 1 1 2 2 2 2 6 8

of
deserialization 0 1 1 2 2 2 6 7

ɠ ɡ ɢ ɣ ɤ

Ø 性能负荷

p 典型的无服务器函数链处理中涉及的步骤：网络协议、复制、中断、上下文切换等;

SPRIGHT: ExtracIng the Server from Serverless CompuIng! High-Performance eBPF-based Event-driven,
Shared-Memory Processing, Sigcomm 2022

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comFaaS数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 性能负荷

37

Networked
Systems Group

Overhead auditing
Key takeaways

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 1 2 3 4 4 4 12 15

of ctxt
switches 1 2 3 4 4 4 12 15

of irqs 3 4 7 6 6 6 18 25

of proto.
processing 1 2 3 3 3 3 9 12

of
serialization 1 1 2 2 2 2 6 8

of
deserialization 0 1 1 2 2 2 6 7

Takeaway#1: Excessive data copies, context switches, and
interrupts.

Takeaway#2: Excessive, duplicate protocol processing.

Takeaway#3: Unnecessary serialization/deserialization.

Takeaway#4: Individual, constantly-running heavyweight
components.

p 典型的无服务器功能链设置中涉及的处理：网络协议、复制、中断、上下文切换等;

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comFaaS数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 性能负荷

p Sidecar引起的额外负载

38

Networked
Systems Group

Overheads: Understanding impact of Sidecar Proxies
Key takeaways

Takeaway#4: Individual, constantly-running heavyweight
components.

Having a sidecar proxy results in a
3×–7× reduction in throughput, 3×–7×
higher latency, and a significant
increase in CPU cycles per request.

CPU overhead breakdown: 50% of
CPU cycles are consumed by the
kernel stack for the sidecar proxy.

38

Networked
Systems Group

Overheads: Understanding impact of Sidecar Proxies
Key takeaways

Takeaway#4: Individual, constantly-running heavyweight
components.

Having a sidecar proxy results in a
3×–7× reduction in throughput, 3×–7×
higher latency, and a significant
increase in CPU cycles per request.

CPU overhead breakdown: 50% of
CPU cycles are consumed by the
kernel stack for the sidecar proxy.

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comFaaS数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 系统实现

p 系统的总体架构

40

Networked
Systems Group

Extracting the Server out of Serverless Computing!
An overview of our design
• eBPF-based event-driven capability

• Shared memory processing

Optimization#1: Event-driven, shared memory function
chain processing

Optimization#2: Direct Function Routing (DFR)

Optimization#3: Event-driven proxy

Optimization#4: eBPF-based dataplane acceleration for
external communication

Optimization#5: Event-driven protocol adaptation (e.g.,
IoT)

Data Plane

Control Plane
Routing

Controller
Metric
ServerAutoscaler

Ingress
Gateway

Function 1

User
container

Metric
flow

Descriptor
flow

Packet
flow eBPF program

function
chain
config.

 SPRIGHT gateway

Function 2

User
container

Function 3

User
container

 Shared memory

Routing
update flow

EPROXY

SPROXY SPROXY SPROXY

SPROXY

Routing table

40

Networked
Systems Group

Extracting the Server out of Serverless Computing!
An overview of our design
• eBPF-based event-driven capability

• Shared memory processing

Optimization#1: Event-driven, shared memory function
chain processing

Optimization#2: Direct Function Routing (DFR)

Optimization#3: Event-driven proxy

Optimization#4: eBPF-based dataplane acceleration for
external communication

Optimization#5: Event-driven protocol adaptation (e.g.,
IoT)

Data Plane

Control Plane
Routing

Controller
Metric
ServerAutoscaler

Ingress
Gateway

Function 1

User
container

Metric
flow

Descriptor
flow

Packet
flow eBPF program

function
chain
config.

 SPRIGHT gateway

Function 2

User
container

Function 3

User
container

 Shared memory

Routing
update flow

EPROXY

SPROXY SPROXY SPROXY

SPROXY

Routing table

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.comFaaS数据⾯优化

基于eBPF的服务网格性能瓶颈定位与优化

Ø 系统实现

44

Networked
Systems Group

Design details
E/S-PROXY
In Knative, a queue proxy runs as an additional container in a
function pod distinct from the user container
• Buffering, metrics collection, health check

• Existing sidecar proxy designs are too heavyweight

We built a lightweight, event-driven eBPF based E/S-PROXY
instead
• Buffering/queueing is offloaded to shared memory
• eBPF programs used for metrics collection

• We create a metrics map with eBPF maps to store collected
metrics

• The metrics map can be accessed by a user space metrics agent
to report metrics to the control plane

• Internal event-driven metrics collection hooks inside
Gateway to provide fine-grained L7 metrics as an
enhancement of EPROXY

• Health check is offloaded to kubelet No overhead if no events: strictly 'load proportional'
Much less overhead when handling events

Resource-savings compared to current 'sidecar' design

SPRIGHT gateway pod

SPRIGHT
gateway
container

veth socket
TX

RX

eBPF
maps

metrics
map

EPROXY

socket
map Shared memory

Function pod

User
container

socket

Descriptor
delivery

Read/Write
with descriptor

SPROXY

SPROXY

lookup

lookup

Function pod

User
container

socket
SPROXY

Descriptor
delivery

Read/Write
with descriptor

Read/Write
with descriptorɠ ɡ

45

Networked
Systems Group

Design details
eBPF-based Gateway for Dataplane
• eBPF forwarding programs attached to XDP/TC hooks at network interfaces (host-veth, NIC)

• Packet redirect features are offered by eBPF (‘XDP_REDIRECT’ and ‘TC_ACT_REDIRECT’)
• Pass raw packets between network interfaces and bypass iptables

• Save CPU cycles, benefit dataplane performance (reduce latency, improve throughput)
• Price: Loss of full-featured iptables network policy support

• Suitable for users only requiring higher dataplane performance

Physical NIC

Broker pod

 veth-host

TX RX XDP

TC

ɠɡɢ

veth-pod
Ingress GW pod

 veth-hostTC

veth-pod
Kernel

FIB
table

Routes
lookup

Packets
flow

eBPF-based GW pod

基于eBPF的gateway

基于eBPF的Proxy

49

Networked
Systems Group

Performance with Realistic Workloads
1. Online boutique

For different alternatives: configure different concurrency
levels (i.e., # of concurrent users) at the load generator

• Knative: 4K concurrency (we stop at 4K since it’s the
maximum load that Knative can handle)

• Our designs using event-driven shared memory processing
(SKMSG) and our design using polling-based shared memory
processing (DPDK): 12K concurrency

Throughput & latency:
• Knative’s RPS is highly variable over time (~890 req/sec)
• Both DPDK and SKMSG maintain a stable RPS of ∼2600

req/sec (3× higher than Knative)
• Knative shows clear overload behavior, e.g., from 50s to 72s,

response time increases significantly, due to large queueing at
the Knative’s gateway ⇒ large tail latency

• Shared memory processing reduces communication overhead
within function chains, achieving better RPS and latency than
Knative, even at much higher traffic load

0 20 40 60 80 100 120 140
timestamp (second)

0

600

1200

1800

2400

3000

Re
q/s

ec DPDK
SKMSG
Knative

测试结果

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

展望01

基于eBPF的服务网格性能瓶颈定位与优化

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com展望

Ø 服务网格数据面下沉到内核

基于eBPF的服务网格性能瓶颈定位与优化

p 实现基于eBPF的Service Mesh数据面部分能力下沉，包括：请求转发、负载均衡、可观测性等

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com展望

Ø 服务网格数据面下沉到内核

基于eBPF的服务网格性能瓶颈定位与优化

p eBPF + Proxy (Envoy) 实现丰富的服务治理如L7路由、灰度方法、故障注入等；

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com展望

p Istio ambient mesh 是 Istio 的一个无 sidecar 的数据平面，旨在降低基础设施成本和提高性能；

https://www.ebpftravel.com/

首 届 中 国 e B P F 研 讨 会
www.ebpftravel.com

Thanks~!

2022/11/14 48

www.ebpftravel.com

https://www.ebpftravel.com/
https://www.ebpftravel.com/

