
M A N N I N G

Daniel J Walsh

The next generation of container engines

Compliments of

Podman and Docker feature comparison

Feature Podman Docker Description

Supports all OCI and
Docker images

✔ ✔ Both pull and run container images from container regis-
tries (i.e., quay.io and docker.io)

Launches OCI container
engines

✔ ✔ Launch containers using runc, crun, Kata, gVisor, and
OCI container engines

Simple command-line
interface

✔ ✔ Podman and Docker share the same CLI.

Integration with systemd ✔ ✘ Podman supports running systemd inside of the container
as well as many systemd features.

Fork/exec model ✔ ✘ The container is a direct descendant of the podman
command.

Fully support user name-
space

✔ ✘ Only Podman supports running containers in separate user
namespaces.

Client–server model ✔ ✔ Docker is a RESTful API daemon. Podman supports REST-
ful API via a systemd socket=activated service.

Supports docker-
compose

✔ ✔ compose scripts work against both restful APIs. Podman’s
works in rootless mode.

Supports docker-py ✔ ✔ docker-py python bindings work against both restful APIs.
Podman’s works in rootless mode. Podman also supports
podman-py for running advanced features.

Daemonless ✔ ✘ The podman command runs like a traditional command-line
tool, while Docker requires multiple root-running daemons.

Supports Kubernetes-like
pods

✔ ✘ Podman supports running multiple containers within the
same pod.

Supports Kubernetes
yaml

✔ ✘ Podman can launch containers and pods based on Kuber-
netes yaml. It can also generate Kuberenetes.yaml from
running containers.

Supports Docker swarm ✘ ✔ Podman believes the future for orchestrated multi-node
containers is Kubernetes and does not plan on implement-
ing Swarm.

Customizable registries ✔ ✘ Podman allows you to configure registries for short name
expansion. Docker is hard coded to docker.io when you
specify a short name.

Customizable defaults ✔ ✘ Podman supports fully customizing all of its defaults includ-
ing security, namespaces, volumes, and more.

Mac OS support ✔ ✔ Podman and Docker support running containers on a Mac
via a VM running Linux.

Windows support ✔ ✔ Podman and Docker support running containers on a Win-
dows WSL2 or a VM running Linux.

Linux support ✔ ✔ Podman and Docker are supported on all major Linux distri-
butions.

Podman in Action
SECURE, ROOTLESS CONTAINERS

FOR KUBERNETES, MICROSERVICES, AND MORE

DANIEL WALSH

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Joshua White
PO Box 761 Technical editor: Roman Zhuzha
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljević

Production editor: Andy Marinkovich
Copy editor: Christian Berk
Proofreader: Katie Tennant

Technical proofreader: Alain Lompo
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633437807
Printed in the United States of America

www.manning.com

 In memory of my mother, Joan P. Walsh

Save 40% on all Manning products in all formats compliments of Red Hat.
Enter RHPIA40 in the Promotional Code box when you checkout.

Only at manning.com—valid through September 7th 2023.

v

brief contents
PART 1 FOUNDATIONS ..1

1 ■ Podman: A next-generation container engine 3
2 ■ Command line 27
3 ■ Volumes 67
4 ■ Pods 76

PART 2 DESIGN...87
5 ■ Customization and configuration files 89
6 ■ Rootless containers 106

PART 3 ADVANCED TOPICS ..125
7 ■ Integration with systemd 127
8 ■ Working with Kubernetes 151
9 ■ Podman as a service 166

PART 4 CONTAINER SECURITY ...187
10 ■ Security container isolation 189
11 ■ Additional security considerations 216

contents
preface xi
acknowledgments xii
about this book xiii
about the author xvi
about the cover illustration xvii

PART 1 FOUNDATIONS ..1

1 Podman: A next-generation container engine 3
1.1 About all these terms 4
1.2 A brief overview of containers 7

Container images: A new way to ship software 9 ■ Container
images lead to microservices 11 ■ Container image format 13
Container standards 14

1.3 Why use Podman when you have Docker? 15
Why have only one way to run containers? 15 ■ Rootless
containers 16 ■ Fork/exec model 17 ■ Podman is
daemonless 19 ■ User-friendly command line 19 ■ Support
for REST API 21 ■ Integration with systemd 21 ■ Pods 22
Customizable registries 23 ■ Multiple transports 25 ■ Complete
customizability 25 ■ User-namespace support 26

1.4 When not to use Podman 26
vi

CONTENTS vii
2 Command line 27
2.1 Working with containers 28

Exploring containers 28 ■ Running the containerized
application 30 ■ Stopping containers 34 ■ Starting
containers 35 ■ Listing containers 36 ■ Inspecting
containers 36 ■ Removing containers 37 ■ exec-ing into
a container 38 ■ Creating an image from a container 39

2.2 Working with container images 41
Differences between a container and an image 42 ■ Listing
images 44 ■ Inspecting images 45 ■ Pushing images 46
podman login: Logging into a container registry 48 ■ Tagging
images 50 ■ Removing images 53 ■ Pulling images 55
Searching for images 58 ■ Mounting images 59

2.3 Building images 60
Format of a Containerfile or Dockerfile 61 ■ Automating the
building of our application 64

3 Volumes 67
3.1 Using volumes with containers 68

Named volumes 70 ■ Volume mount options 72 ■ podman run
- -mount command option 75

4 Pods 76
4.1 Running pods 76
4.2 Creating a pod 79
4.3 Adding a container to a pod 80
4.4 Starting a pod 82
4.5 Stopping a pod 83
4.6 Listing pods 84
4.7 Removing pods 84

PART 2 DESIGN ...87

5 Customization and configuration files 89
5.1 Configuration files for storage 91

Storage location 91 ■ Storage drivers 94

5.2 Configuration files for registries 96
registries.conf 96

CONTENTSviii
5.3 Configuration files for engines 100
5.4 System configuration files 104

6 Rootless containers 106
6.1 How does rootless Podman work? 109

Images contain content owned by multiple user identifiers
(UIDs) 110

6.2 Rootless Podman under the covers 118
Pulling the image 119 ■ Creating a container 120
Setting up the network 120 ■ Starting the container monitor:
conmon 121 ■ Launching the OCI runtime 121 ■ The
containerized application runs until completion 124

PART 3 ADVANCED TOPICS...125

7 Integration with systemd 127
7.1 Running systemd within a container 128

Containerized systemd requirements 131 ■ Podman container in
systemd mode 131 ■ Running an Apache service within a systemd
container 132

7.2 Journald for logging and events 134
Log driver 135 ■ Events 136

7.3 Starting containers at boot 137
Restarting containers 137 ■ Podman containers as systemd
services 138 ■ Distributing systemd unit files to manage Podman
containers 141 ■ Automatically updating Podman containers 142

7.4 Running containers in notify unit files 145
7.5 Rolling back failed containers after update 147
7.6 Socket-activated Podman containers 147

8 Working with Kubernetes 151
8.1 Kubernetes YAML files 153
8.2 Generating Kubernetes YAML files with Podman 153
8.3 Generating Podman pods and containers from

Kubernetes YAML 157
Shutting down pods and containers based on a Kubernetes YAML
file 158 ■ Building images using Podman and Kubernetes
YAML files 159

CONTENTS ix
8.4 Running Podman within a container 162
Running Podman within a Podman container 163 ■ Running
Podman within a Kubernetes pod 164

9 Podman as a service 166
9.1 Introducing the Podman service 167

Systemd services 168

9.2 Podman-supported APIs 171
9.3 Python libraries for interacting with Podman 173

Using docker-py with the Podman API 174 ■ Using podman-py
with the Podman API 175 ■ Which Python library should
you use? 176

9.4 Using docker-compose with the Podman service 177
9.5 podman --remote 180

Local connections 180 ■ Remote connections 182
Setting up SSH on the client machine 184 ■ Configuring a
connection 185

PART 4 CONTAINER SECURITY187

10 Security container isolation 189
10.1 Read-only Linux kernel pseudo filesystems 191

Unmasking the masked paths 192 ■ Masking additional
paths 193

10.2 Linux capabilities 194
Dropped Linux capabilities 195 ■ Dropped CAP_SYS_ADMIN 196
Dropping capabilities 197 ■ Adding capabilities 197 ■ No new
privileges 198 ■ Root with no capabilities is still dangerous 198

10.3 UID isolation: User namespace 198
Isolating containers using the - -userns=auto flag 199 ■ User-
namespaced Linux capabilities 201 ■ Rootless Podman with the
- -userns=auto flag 202 ■ User volumes with the - -userns=auto
flag 202

10.4 Process isolation: PID namespace 204
10.5 Network isolation: Network namespace 205
10.6 IPC isolation: IPC namespace 206
10.7 Filesystem isolation: Mount namespace 206

CONTENTSx
10.8 Filesystem isolation: SELinux 207
SELinux type enforcement 207 ■ SELinux Multi-Category
Security separation 211

10.9 System call isolation seccomp 213
10.10 Virtual machine isolation 214

11 Additional security considerations 216
11.1 Daemon versus the fork/exec model 217

Access to the docker.sock 217 ■ Auditing and logging 218

11.2 Podman secret handling 220
11.3 Podman image trust 221

Podman image signing 224

11.4 Podman image scanning 228
Read-only containers 229

11.5 Security in depth 229
Podman uses all security mechanisms simultaneously 230
Where should you run your containers? 230

appendix A Podman-related container tools 232
appendix B OCI runtimes 246
appendix C Getting Podman 254
appendix D Contributing to Podman 259
appendix E Podman on macOS 262
appendix F Podman on Windows 269

index 281

preface
I have been working on computer security for close to 40 years, and for the past 20
years, I’ve focused on container technologies. When Docker showed up about 10 years
ago, it triggered a revolution in the way the people distributed and ran applications
on the internet. As I worked on Docker, I felt it could have been designed better.
Working with a root-running daemon and then adding more and more daemons felt
like the wrong approach. Instead, I felt we could use low-level operating systems con-
cepts to create a tool that ran the same containerized applications in the same man-
ner but with more security and requiring fewer privileges. With this in mind, my team
at Red Hat set out to build a series of tools to help developers and administrators run
containers in the most secure way possible. Out of this effort came Podman.

 I started blogging on subjects like SELinux in the early 2000s and have been writ-
ing articles ever since. I have written hundreds of articles on containers and security
over the years, but I wanted to consolidate the ideas and describe the technology of
Podman in a single book I could point users and customers to.

 This book introduces Podman and how to use it. It also dives deep into the tech-
nology and the different parts of the Linux operating system that we take advantage
of. Since I am a security engineer, I also spend a couple of chapters describing how
the security of containers works. Reading this book should give you a better under-
standing of what containers are, how they work, and how to work with different fea-
tures of Podman. You will even learn a lot more about Docker. As Podman grows in
popularity and infiltrates your infrastructure, this book will be a handy reference to
guide your way.
xi

acknowledgments
I extend thanks to all the people who helped me write this book. This includes mem-
bers of the Podman team, who have written articles that helped me understand some
of the technology I did not fully comprehend and have helped build a great product.
Thank you, Brent Baude, Matt Heon, Valentin Rothberg, Giuseppe Scrivano, Urvashi
Mohnani, Nalin Dahyabhai, Lokesh Mandvekar, Miloslav Trmac, Jason Greene, Jhon
Honce, Scott McCarty, Tom Sweeney, Ashley Cui, Ed Santiago, Chris Evich, Aditya
Rajan, Paul Holzinger, Preethi Thomas, and Charlie Doern. I also want to thank the
countless open source contributors who have made Linux containers and Podman
possible.

 I thank the entire team at Manning, but especially Toni Arritola. Toni taught me
how to better focus my ideas and has been a great partner on this journey. She’s had
to deal with me, an old mathematics major who was never great at writing, and she
helped make this book possible.

 To all the reviewers—Alain Lompo, Alessandro Campeis, Allan Makura, Amanda
Debler, Anders Björklund, Andrea Monacchi, Camal Cakar, Clifford Thurber, Conor
Redmond, David Paccoud, Deepak Sharma, Federico Kircheis, Frans Oilinki,
Gowtham Sadasivam, Ibrahim Akkulak, James Liu, James Nyika, Jeremy Chen, Kent
Spillner, Kevin Etienne, Kirill Shirinkin, Kosmas Chatzimichalis, Krzysztof Kamyczek,
Larry Cai, Michael Bright, Mladen Knežić, Oliver Korten, Richard Meinsen, Roman
Zhuzha, Rui Liu, Satadru Roy, Seung-jin Kim, Simeon Leyzerzon, Simone Sguazza,
Syed Ahmed, Thomas Peklak, and Vivek Veerappan—thank you, your suggestions
helped make this a better book.
xii

about this book
Podman in Action describes how users can build, manage, and run containers. My goal
in writing it was to explain how easy it is to transfer skills you might have learned in
Docker to Podman as well as how easy it is to use Podman if you have never used a
container engine before. Podman in Action also teaches you how to use advanced fea-
tures like pods and guides you on your journey toward building applications ready to
run on the edge of or inside Kubernetes. Finally, Podman in Action explains all of the
security features of the Linux kernel used to isolate containers from the system as well
as from other containers.

Who should read this book?
Podman in Action is written for software developers who are looking to understand,
develop, and work with containers, as well as system administrators who need to run
containers in production. Reading this book will give you a deeper understanding of
what containers are. Having knowledge of Linux processes and familiarity working
with the Linux shells is necessary to get the full benefit of the book.

 The book should have something for everyone on their quest to use containers.
Users with a deep understanding of Docker will learn about advanced features of
Podman not available from Docker and will get an even deeper understanding of how
Docker works. Novice users will learn the basics of containers and pods.

xiii

ABOUT THIS BOOKxiv
How this book is organized: A roadmap
Podman in Action is split into four parts and six appendixes:

 Part 1, “Foundations,” comprises four chapters and provides readers an introduc-
tion to Podman. Chapter 1 explains what Podman does, why it was created, and
why it is important. The next two chapters introduce the command-line interface
and how to use volumes within containers. Finally, chapter 4 introduces the con-
cept of pods and how Podman works with them. There should be something for
everyone in these chapters, but if you have great experience with Docker, you
should be able to skim over much of the content in chapter 2.

 Part 2, “Design,” comprises two chapters in which I dig deep into Podman’s
design. You will learn about rootless containers and how they work and will
come out of these chapters with a better understanding of user namespaces and
the security of rootless containers. You will also learn how to customize the con-
figuration of your Podman environment.

 Part 3, “Advanced topics,” comprises three chapters and moves beyond the
basics of Podman. In chapter 7 you will see how Podman can work in produc-
tion through its integration with systemd. It covers running systemd inside a
container and how you can use it as a container manager. You will learn how
to set up edge servers with Podman containers, where systemd manages the
life cycle of the container. Podman makes it easy to generate systemd unit
files to help you put your containerized applications into production. In
chapter 8 you will learn how Podman can be used to help you move contain-
ers into Kubernetes. Podman supports launching containers with the same
YAML files that Kubernetes uses as well as the ability to generate Kubernetes
YAML from your current containers. In chapter 9 you will see Podman run-
ning as a service, allowing remote access to Podman containers. Using Pod-
man as a service allows you to use other programming languages and tools to
manage Podman containers. You will see how docker-compose can work with
Podman containers. You will also learn how to use the Python libraries like
podman-py and docker-py to communicate with the Podman service for man-
aging containers.

 Part 4, “Container security,” comprises two chapters, in which I discuss import-
ant security considerations. Chapter 10 covers features used to ensure con-
tainer isolation. This chapter covers security subsystems of Linux, like SELinux,
seccomp, Linux capabilities, kernel file systems, and namespaces. Chapter 11
then examines the security considerations I consider best practices for running
your containers in as secure a manner as possible.

Additionally, there are six appendixes covering Podman-related subjects:

 Appendix A covers all of the Podman-related tools, including Buildah, Skopeo,
and CRI-O.

ABOUT THIS BOOK xv
 Appendix B dives into the different OCI runtimes available to Podman as well
as Docker. It covers runc, crun, Kata, and gVisor.

 Appendix C describes how you can get Podman onto your local system, whether
that system is a Linux, Mac, or Windows box.

 Appendix D describes the Podman open source community and how you can
join.

 Appendixes E and F dive into running Podman on Mac and Windows boxes.

liveBook discussion forum
Each purchase of Podman in Action includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/podman-in-action/discussion. You can also learn more about Manning's forums
and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Author online
You can follow Dan Walsh on Twitter and GitHub @rhatdan. He regularly blogs at
https://www.redhat.com/sysadmin/users/dwalsh as well as on several other sites.
There are many videos of talks Dan has presented available on YouTube as well.

https://livebook.manning.com/book/podman-in-action/discussion
https://livebook.manning.com/book/podman-in-action/discussion
https://www.redhat.com/sysadmin/users/dwalsh
https://livebook.manning.com/discussion

about the author
DANIEL WALSH leads the team that created Podman, Buildah,
Skopeo, CRI-O, and their related tools. Dan is a senior distin-
guished engineer at Red Hat, having joined in August 2001. He
has worked in the computer security field for over 40 years. Dan
is sometimes referred to as Mr. SELinux after leading the devel-
opment of SELinux at Red Hat prior to leading the container
team. Dan has a BA in mathematics from the College of the
Holy Cross and an MS in computer science from Worcester
Polytechnic Institute. On Twitter and GitHub you can find him
@rhatdan. You can email him at dwalsh@redhat.com.
xvi

about the cover illustration
The figure on the cover of Podman in Action is captioned “La vandale,” or “The van-
dal,” and is taken from a collection by Jacques Grasset de Saint-Sauveur, published in
1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xvii

Part 1

Foundations

In part 1 of the book, I introduce you to several ways you can use Podman
from the command line. In chapter 2 you learn how to create and work with
containers and how containers work with images. You also learn the difference
between a container and an image, how to save a container into an image, and
then to push the image to a registry, so it can be shared with other users.

 In chapter 3 I introduce the concept of a volume. Volumes are the mecha-
nisms most users of your containerized applications use to store their data and
keep it isolated from the application. The first two chapters really concentrate
on the use of containers and images, which is very similar to the way containers
work in Docker.

 Chapter 4 adds the concept of pods, similar to Kubernetes Pods, a feature
Docker does not support. Pods allow you to share one or more containers within
the same resource, namespaces, and security constraints. Pods can allow you to
write more complex applications and manage them as a single entity.

Podman:
A next-generation
container engine
Starting this book is difficult because so many people come to it with different
expectations and experiences. You likely have some experience with containers,
Docker, or Kubernetes—or at least are interested in learning more about Podman
because you’ve heard about it. If you’ve used or evaluated Docker, you’ll find that
Podman works the same as Docker in most cases, but it solves some problems inher-
ent in Docker; most significantly, Podman offers enhanced security and the ability
to run commands with non-root privileges. This means you can manage containers
with Podman without root access or privileges. Because of Podman’s design, it can
run with much better security than Docker by default.

 In addition to being open source (and therefore free), Podman’s commands,
run from the command-line interface (CLI), are quite similar to Docker’s. This
book shows how you can use Podman as a local container engine to launch contain-
ers on a single node, either locally or through a remote REST API. You’ll also learn
how to find, run, and build containers using Podman with open source tools such
as Buildah and Skopeo.

This chapter covers
 What Podman is

 The advantages of using Podman over Docker

 Examples of using Podman
3

4 CHAPTER 1 Podman: A next-generation container engine
1.1 About all these terms
Before you go further, I think it is important to define the terminology that will be
used throughout this book. In the container world, terms like container orchestrator, con-
tainer engine, and container runtime are often used interchangeably, which commonly
leads to confusion. The following list is a summary of what each of these terms refers
to in the context of this text:

 Container orchestrators—Software projects and products that orchestrate contain-
ers onto multiple different machines or nodes. These orchestrators communicate
with container engines to run containers. The primary container orchestrator is
Kubernetes, which was originally designed to talk to the Docker daemon con-
tainer engine, but using Docker is becoming obsolete because Kubernetes pri-
marily uses CRI-O or containerd as its container engine. CRI-O and containerd
are purpose built for running orchestrated Kubernetes containers (CRI-O is
covered in appendix A). Docker Swarm and Apache Mesos are other examples
of container orchestrators.

 Container engines—Primarily used for configuring containerized applications to
run on a single local node. They can be launched directly by users, administra-
tors, and developers. They can also be launched out of systemd unit files at boot
as well as launched by container orchestrators like Kubernetes. As previously
mentioned, CRI-O and containerd are container engines used by Kubernetes to
manage containers locally. They really are not intended to be used directly by
users. Docker and Podman are the primary container engines used by users to
develop, manage, and run containerized applications on a single machine. Pod-
man is seldom used to launch containers for Kubernetes; therefore, Kubernetes
is not generally covered in this book. Buildah is another container engine,
although it is only used for building container images.

 Open Container Initiative (OCI) container runtimes—Configure different parts of
the Linux kernel and then, finally, launch the containerized application. The two
most commonly used container runtimes are runc and crun. Kata and gVisor are
other examples of container runtimes. See appendix B to understand the dif-
ferences between the OCI container runtimes.

Figure 1.1 shows into which categories these open source container projects fit.
 Podman is short for Pod Manager. A pod, a concept popularized by the Kubernetes

project, is one or more containers sharing the same namespaces and cgroups (resource
constraints). Pods are covered in greater depth in chapter 4. Podman runs individual
containers as well as pods. The Podman logo in figure 1.2 is a group of Selkies, the
Irish concept of a mermaid. Groups of Selkies are called pods.

 The Podman project describes Podman as “a daemonless container engine for
developing, managing, and running OCI Containers on your Linux System. Contain-
ers can either be run as root or in rootless mode” (https://podman.io). Podman is
often summarized with the simple line alias Docker = Podman because Podman does

https://podman.io

51.1 About all these terms
almost everything that Docker can do with the same command line as Docker. But as
you will learn in this book, Podman can do so much more. Understanding Docker is
not critical to understanding Podman, but it is helpful.

C
o

n
ta

in
e

r
o

rc
h

e
s
tr

a
to

rs
C

o
n
ta

in
e
r

e
n
g
in

e
s

O
C

I
c
o
n
ta

in
e
r

ru
n
ti
m

e
s

Figure 1.1 Different open source projects dealing with containers within the categories of orchestrators,
engines, and runtimes.

Figure 1.2 Podman’s logo

6 CHAPTER 1 Podman: A next-generation container engine
NOTE The Open Container Initiative (OCI) is a standards body with the pri-
mary goal of creating open industry standards regarding container formats
and runtimes. For more information, see https://opencontainers.org.

The Podman upstream project resides at github.com in the Containers project,
(https://github.com/containers/podman) shown in figure 1.3, along with other

Figure 1.3 Containers is the developer site for Podman and other related container tools (see
https://github.com/containers).

https://github.com/containers
https://opencontainers.org
https://github.com/containers/podman

71.2 A brief overview of containers
container libraries and container management tools like Buildah and Skopeo. (See
appendix A for a description of some of these tools.)

 Podman runs images with the newer OCI format, described in section 1.1.2, as well
as the legacy Docker (v2 and v1) format images. Podman runs any image available at
container registries, like docker.io and quay.io, as well as the hundreds of other con-
tainer registries. Podman pulls these images to a Linux host and launches them in the
same way as Docker and Kubernetes. Podman supports all OCI runtimes, including
runc, crun, kata, and gvisord (appendix B), just like Docker.

 This book is intended to aid Linux administrators in understanding the advan-
tages of using Podman as their primary container engine. You will learn how to config-
ure your systems as securely as possible but still allow your users to work with containers.
One of Podman’s primary use cases is running containerized applications on single-
node environments, such as edge devices. Podman and systemd allow you to manage
the entire life cycle of the application on nodes without human intervention. Pod-
man’s goal is running containers naturally on a Linux box, taking advantage of all the
features of the Linux platform.

NOTE Podman is available for many different Linux distributions and on Mac
and Windows platforms. Please refer to appendix C to see how to get Podman
on your platform.

Application developers are also an intended audience for this book. Podman is a great
tool for developers looking to containerize their applications in a secure manner.
Podman allows developers to create Linux containers on all Linux distributions. In
addition, Podman is available on the Mac and Windows platforms, where it can com-
municate with the Podman service running within a VM or on a Linux box available
on the network. Podman in Action shows you how to work with containers, build con-
tainer images, and then convert their containerized applications into either single-
node services to run on edge devices or into Kubernetes-based microservices.

 Podman and the container tools are open source projects with contributors from
many different companies, universities, and organizations. Contributors come from
all over the world. The projects are always looking to add new contributors to improve
them; please refer to appendix D to see how you can join the effort. In this chapter, I
first provide a brief overview of containers, and then I explain some key features that
make Podman a great tool for working with containers.

1.2 A brief overview of containers
Containers are groups of processes running on a Linux system that are isolated from
each other. Containers make sure one group of processes does not interfere with
other processes on the system. Rogue processes can’t dominate system resources,
which might prevent other processes from performing their task. Hostile containers
are also prevented from attacking other containers, stealing data, or causing denial of
service attacks. A final goal of containers is allowing applications to be installed with

8 CHAPTER 1 Podman: A next-generation container engine
their own versions of shared libraries that do not conflict with applications requiring
different versions of the same libraries. Instead they allow applications to live in a vir-
tualized environment, giving the impression that they own the entire system.

 Containers are isolated via the following:

 Resource constraints (cgroups)—The cgroup man page (https://man7.org/linux/
man-pages/man7/cgroups.7.html) defines cgroups as the following: “Control
groups, usually referred to as cgroups, are a Linux kernel feature which allow
processes to be organized into hierarchical groups whose usage of various types
of resources can then be limited and monitored.”

Examples of resources controlled by cgroups include the following:

– The amount of memory a group of processes can use
– The amount of CPU processes can use
– The amount of network resources a process can use

The basic idea of cgroups is preventing one group of processes from dominat-
ing certain system resources in such a way that another group of processes can’t
make progress on the system.

 Security constraints—Containers are isolated from each other using many secu-
rity tools available in the kernel. The goal is blocking privilege escalation and
preventing a rogue group of processes from committing hostile acts against the
system, including the following examples:

– Dropped Linux capabilities limit the power of root.
– SELinux controls access to the filesystem.
– There is read-only access to kernel filesystems.
– Seccomp limits the system calls available in the kernel.
– A user namespace to map one group of UIDs in the host to another allows

access to limited root environments.
Table 1.1 gives further information and provides links with more detail about
some of these security features.

Table 1.1 Advanced Linux security features

Component Description Reference

Linux capabilities Linux capabilities subdivide the power of
root into distinct capabilities.

The capabilities man page is a
good overview of the available capa-
bilities (https://bit.ly/3A3Ppeg).

SELinux Security-Enhanced Linux (SELinux) is a Linux
kernel mechanism that labels every process
and every filesystem object on the system.
A SELinux policy defines the rules on how
labeled processes interact with label
objects. The Linux kernel enforces the rules.

I wrote the SELinux Coloring Book,
which is a fun way to help you
understand SELinux (https://bit.ly/
33plEbD). If you really want to
study the subject, check out the
SELinux notebook (https://bit.ly/
3GxGhkm).

https://bit.ly/3A3Ppeg
https://bit.ly/33plEbD
https://bit.ly/33plEbD
https://bit.ly/3GxGhkm
https://bit.ly/3GxGhkm
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html

91.2 A brief overview of containers
 Virtualization technologies (namespaces)—The Linux kernel employs a concept
called namespaces, which creates virtualized environments, where one set of pro-
cesses sees one set of resources, while another set of processes sees a different
set of resources. These virtualized environments eliminate processes’ views into
the rest of the system, giving them the feel of a virtual machine (VM) without
the overhead. Examples of namespaces include the following:

– Network namespace —Eliminates the access to the host network but gives
access to virtual network devices

– Mount namespace —Eliminates the view of all the filesystem, except the
containers filesystem

– PID namespace —Eliminates the view of other processes on the system; con-
tainer processes only see the processes within the container

These container technologies have existed in the Linux kernel for many years. Secu-
rity tools for isolating processes started in Unix back in the 1970s, and SELinux started
in 2001. Namespaces were introduced around 2004, and cgroups were introduced
around 2006.

NOTE Windows container images exist, but this book concentrates on Linux-
based containers. Even when running Podman on Windows, you are still
working with Linux containers. Podman on Mac is covered in appendix E.
Podman on Windows is covered in appendix F.

1.2.1 Container images: A new way to ship software

Containers really didn’t take off until the Docker project introduced the concept of
the container image and container registry. Basically, they created a new way to ship
software.

 Traditionally, installing multiple software applications on a Linux system has led to a
problem of dependency management. Before containers, you packaged software using
package managers like RPM and Debian packages. These packages are installed on a
host and share the content on the host, including shared libraries. When developers test
their code, everything might work fine when run on the host machine. The quality

Seccomp seccomp is a Linux kernel mechanism that
limits the number of syscalls to a group of
processes on the system. You can remove
potentially dangerous syscalls from being
called by the processes.

The seccomp man page is a good
source of additional information on
seccomp (https://bit.ly/3rnnim1).

User namespace The user namespace allows you to have
Linux capabilities within the group of UIDs
and GIDs assigned to the namespace, with-
out having root capabilities on the host.

The user namespace is fully
explained in chapter 3.

Table 1.1 Advanced Linux security features (continued)

Component Description Reference

https://bit.ly/3rnnim1

10 CHAPTER 1 Podman: A next-generation container engine
engineering team then might test the software on a different machine with different
packages and see failures. Both teams would need to work together to generate the
proper requirements. Finally, the software is shipped to customers, who have many differ-
ent configurations and software installed, leading to further breakage of the application.

 Container images solve the dependency management problem by bundling all the
software needed to run your application together into a unit. You ship all the libraries,
executables, and configuration files together. The software is isolated from the host
via container technology. Usually the only part of the host system that your application
interacts with is the host kernel.

 The developer, quality engineers, and customer all run the exact same container-
ized environment along with the application. This helps guarantee consistency and
limits the number of bugs caused by misconfiguration.

 Containers are often compared to VMs in that they both can run multiple isolated
applications on a single node. When using VMs, you need to manage the entire VM
operating system as well as the isolated application. You need to manage the life cycle of
the different kernel, init system, logging, security updates, backups, and so on. The sys-
tem also has to deal with the overhead of the entire running operation system, not just
the application. In the container world, all you run is the containerized application—
there is no overhead and no additional OS management. Figure 1.4 shows three appli-
cations running in three different VMs.

Physical machine

Virtual machine Virtual machine Virtual machine

Complete

operating system

Complete

operating system

Complete

operating system

Application 1 Application 2 Application 3

OS dependencies OS dependencies OS dependencies

Kernel spaceKernel space Kernel space

OS dependencies

Kernel space

Physical hardware

Figure 1.4 Physical machine running three applications in three VMs

111.2 A brief overview of containers
With VMs you end up needing to manage four operations systems, whereas with con-
tainers the three applications run with just their required user spaces. You end up
managing just one operating system, as shown in figure 1.5.

1.2.2 Container images lead to microservices

Packing applications inside of container images allows the installation of multiple
applications with conflicting requirements on the same host. For example, one appli-
cation might require a different version of the C library than another, which prevents
them from being installed at the same time. Figure 1.6 shows a traditional application
running within an operating system without use of containers.

 Containers can have the correct C library within their container image, with each
image potentially having different versions of the library specific to the container’s
application. You can run applications from totally different distributions.

 Containers make it easy to run multiple instances of the same application, as
shown in figure 1.7. Container images encourage the packaging of a single service or
application into a single container. Containers allow you to easily wire multiple appli-
cations together via the network.

 Instead of designing monolithic applications in which you have a web frontend, a
load balancer, and a database, you can build three different container images and
then wire them together to build microservices. Microservices allow you and other
users to experiment with running multiple databases and web frontends, then orches-
trate them together. Containerized microservices make the sharing and reuse of soft-
ware possible.

Container image

Application 1

OS dependencies

Container image

Application 2

OS dependencies

Container image

Application 3

OS dependencies

OS dependencies

Physical machine

Kernel space

Physical hardware

Figure 1.5 Physical machine running three applications in three
containerized applications

12 CHAPTER 1 Podman: A next-generation container engine
Physical machine

Web service
PHP/Perl

application
MariaDB

Datastore Database

OS dependencies

Kernel space

Physical hardware

Figure 1.6 Traditional LAMP stack (Linux, Apache, MariaDB, and PHP/PERL
application) running on a server

Physical machine

Containers communicate via virtual private network.

Container image

Web service

OS dependencies

Container image

OS dependencies

Container image

OS dependencies

MariaDB PHP/Perl application

Datastore Database

OS dependencies

Kernel space

Physical hardware

Figure 1.7 LAMP stack packaged individually into microservice containers. As
containers communicate via the network, they can be easily moved to other
VMs, making reuse much easier.

131.2 A brief overview of containers

Archi

Op
sys
this
1.2.3 Container image format

A container image consists of three components:

 A directory tree containing all the software required to run your application
 A JSON file that describes the contents of the rootfs
 Another JSON file called a manifest list that links multiple images together to

support different architectures

The directory tree is called a rootfs (root filesystem). The software is laid out like it was
the root (/) of a Linux system.

 The executable to be run within the rootfs, the working directory, the environ-
ment variables to be used, the maintainer of the executable, and other labels to help
identify the content of the image are defined in the first JSON file. You can see this
JSON file using the podman inspect command:

$ podman inspect docker:/ /registry.access.redhat.com/ubi8
{
…
 "created": "2022-01-27T16:00:30.397689Z",
 "architecture": "amd64",
 "os": "linux",
 "config": {
 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "container=oci"
],
 "Cmd": [
 "/bin/bash"
],
 "Labels": {
 "architecture": "x86_64",
 "build-date": "2022-01-27T15:59:52.415605",
 …
}

The second JSON file, the manifest list, allows users on an arm64 machine to pull an
image with the same name as they would if they were on an arm64 machine. Podman
pulls the image based on the default architecture of the machine, using this manifest
list. Skopeo is a tool that uses the same underlying libraries as Podman and is available
at github.com/containers/skopeo (see appendix A). Skopeo provides lower-level out-
put examining the structures of a container image. In the following example, use the
skopeo command with the --raw option to examine the registry.access.redhat.com/
ubi8 image manifest specification:

$ skopeo inspect --raw docker:/ /registry.access.redhat.com/ubi8
{
 "manifests": [
 {

Date the image
was created

tecture
for this
image

erating
tem for
 image

Environment variables that the
developer of the image wants
to be set within the container

Default
command to be
executed when

the container
starts

Labels to help describe the contents of the
image. These fields can be free-form and do
not affect the way images are run but can be
used to search for and describe the image.

http://github.com/containers/skopeo

14 CHAPTER 1 Podman: A next-generation container engine

e
e
I,
n.
 "digest": "sha256:cbc1e8cea

➥ 8c78cfa1490c4f01b2be59d43ddbb

➥ ad6987d938def1960f64bcd02c",
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
 "platform": {
 "architecture": "amd64",
 "os": "linux"
 },
 "size": 737
 },
 {
 "digest":

➥ "sha256:f52d79a9d0a3c23e6ac4c3c8f2ed8d6337ea47f4e2dfd46201756160ca193308",
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
 "platform": {
 "architecture": "arm64",
 "os": "linux"
 },
 "size": 737
 },
…
}

Images use the Linux tar utility to pack the rootfs and the JSON files together. These
images are then stored on web servers called container registries (e.g., docker.io,
quay.io, and Artifactory). Container engines like Podman can copy these images to a
host and unpack them onto the filesystem. Then the engine merges the image’s JSON
file, the engine’s built-in defaults, and the user’s input to create a new container OCI
runtime specification JSON file. The JSON file describes how to run the containerized
application.

 In the last step, the container engine launches a small program called a container
runtime (e.g., runc, crun, kata, or givisord). The container runtime reads the con-
tainer’s JSON and instruments, kernel cgroups, security constraints, and namespaces
before finally launching the primary process of the container.

1.2.4 Container standards

The OCI standards body defined the standard formats for storing and defining con-
tainer images. They also defined the standard for container engines running contain-
ers. The OCI created the OCI Image Format, which standardizes the format of the
container images and the images’ JSON file. They also created the OCI Runtime Spec-
ification, which standardized the container’s JSON file to be used by OCI runtimes.
The OCI standards allow other container engines, like Podman,1 to follow the stan-
dards and be able to work with all the images stored at container registries and to run
them in the exact same way as all other container engines, including Docker (see fig-
ure 1.7).

1 Other container engines include Buildah, CRI-O, containerd, and many others.

Digest of the exact image pulled when
the architecture and OS match

mediaTyp
describes the typ
of the image, OC

Docker, and so o

The architecture
of this image
digest: amd64

The OS of
this image

digest: Linux

This stanza points to a different image
for a different architecture: arm64.

151.3 Why use Podman when you have Docker?
1.3 Why use Podman when you have Docker?
I often get asked the question, “Why do you need Podman when you already have
Docker?” Well one reason is that open source is all about choice. Operating systems have
more than one editor, more than one shell, more than one filesystem, and more than
one internet web browser. I believe that Podman’s design is fundamentally better than
Docker’s and offers features that advance the security and use of containers.

1.3.1 Why have only one way to run containers?

One of Podman’s advantages was that it was created long after Docker existed. Podman
developers looked at ways to improve on Docker’s design from a totally different per-
spective. Because Docker was written as open source, Podman shares some of the code
and takes advantage of new standards, like the Open Container Initiative. Podman
works with the open source community to concentrate on developing new features.

 In the rest of this section, I cover some of these improvements. Table 1.2 describes
and compares features available in Podman and Docker.

Table 1.2 Podman and Docker feature comparison

Feature Podman Docker Description

Supports all OCI and
Docker images

✔ ✔ Pulls and runs container images from container regis-
tries (i.e., quay.io and docker.io). See chapter 2.

Launches OCI con-
tainer engines

✔ ✔ Launches runc, crun, Kata, gVisor, and OCI con-
tainer engines. See appendix B.

Simple command-line
interface

✔ ✔ Podman and Docker share the same CLI. See chap-
ter 2.

Integration with
systemd

✔ ✘ Podman supports running systemd inside the con-
tainer as well as many systemd features. See chap-
ter 7.

Fork/exec model ✔ ✘ The container is a child of the command.

Fully supports user
namespace

✔ ✘ Only Podman supports running containers in separate
user namespaces. See chapter 6.

Client-server model ✔ ✔ Docker is a REST API daemon. Podman supports
REST APIs via a systemd socket-activated service.
See chapter 9.

Supports docker-
compose

✔ ✔ Compose scripts work against both REST APIs. Pod-
man works in rootless mode. See chapter 9.

Supports docker-py ✔ ✔ Docker-py Python bindings work against both REST
APIs. Podman works in rootless mode. Podman also
supports podman-py for running advanced features.
See chapter 9.

Daemonless ✔ ✘ The Podman command runs like a traditional com-
mand-line tool, while Docker requires multiple root-
running daemons.

16 CHAPTER 1 Podman: A next-generation container engine
1.3.2 Rootless containers

Probably the most significant feature of Podman is its ability to run in rootless mode.
In many situations, you do not want to give full root access to your users, but users and
developers still need to run containers and build container images. Requiring root
access prevents lots of security-conscious companies from widespread adoption of
Docker. Podman, on the other hand, can run containers with no additional security
features in Linux other than a standard login account.

 You can run the Docker client as a normal user by adding the user to the Docker
user group (/etc/group), but I believe granting this access is one of the most danger-
ous things you can do on a Linux machine. Access to the docker.sock allows you to
gain full root access on the host by running the following command. In the command,
you are mounting the entire host operating system / on the /host directory within the
container. The --privileged flag turns off all container security, and then you chroot

Supports Kubernetes-
like pods

✔ ✘ Podman supports running multiple containers within
the same pod. See chapter 4.

Supports Kubernetes
YAML

✔ ✘ Podman can launch containers and pods based on
Kubernetes YAML. It can also generate Kubernetes
YAML from running containers. See chapter 8.

Supports Docker
Swarm

✘ ✔ Podman believes the future for orchestrated multinode
containers is Kubernetes and does not plan on imple-
menting Swarm.

Customizable regis-
tries

✔ ✘ Podman allows you to configure registries for short-
name expansion. Docker is hardcoded to docker.io
when you specify a short name. See chapter 5.

Customizable defaults ✔ ✘ Podman supports fully customizing all of its defaults,
including security, namespaces, and volumes. See
chapter 5.

macOS support ✔ ✔ Podman and Docker support running containers on a
Mac via a VM running Linux. See appendix E.

Windows support ✔ ✔ Podman and Docker support running containers on a
Windows WSL 2 or a VM running Linux. See appendix
F.

Linux support ✔ ✔ Podman and Docker are supported on all major Linux
distributions. See appendix C.

Containers aren’t
stopped on software
upgrade.

✔ ✘ Podman is not required to remain running when con-
tainers are running. Since the Docker daemon is
monitoring containers, by default, when it stops, all
containers stop.

Table 1.2 Podman and Docker feature comparison (continued)

Feature Podman Docker Description

171.3 Why use Podman when you have Docker?
to /host. After the chroot, you are in a root shell at / of the operating system, with full
root privileges:

$ docker run -ti --name hacker --privileged -v /:/host ubi8 chroot /host
#

At this point, you have full root privileges on the machine, and you can do whatever
you want. When you are done hacking the machine, you can simply execute the
docker rm command to remove the container and all records of what you did:

$ docker rm hacker

When Docker is configured with default file logging, all records of your launching the
container are erased. I believe this is far worse than setting up sudo without root, in
that at least with sudo, you have the chance to see that sudo was run in your log files.

 With Podman the processes running on the system are always owned by the user
and have no capabilities greater than a normal user. Even if you break out of the con-
tainer, the process is still running as your UID, and all actions on the system are
recorded in the audit logs. Users of Podman cannot simply remove the container and
cover up their tracks. See chapter 6 for more information.

NOTE Docker now has the ability to run rootless similarly to Podman, but
almost no one runs it that way. Starting up multiple services in your home
directory just to launch a single container has not caught on.

1.3.3 Fork/exec model

Docker is built as a REST API server. Fundamentally Docker is a client-server archi-
tecture including multiple daemons. When a user executes the Docker client, they
execute a command-line tool that connects to the Docker daemon. The Docker dae-
mon then pulls images to its storage and then connects to the containerd daemon,
which finally executes an OCI runtime that creates the container. The Docker dae-
mon, then, is a communication platform that communicates reads and writes of
stdin, stdout, and stderr from the initial process (PID1) created in the container.
The daemon relays all of the output back to the Docker client. Users imagine the
container’s processes are just children of the current session, but there is a lot of
communication going on behind the scenes. Figure 1.8 shows the Docker client-
server architecture.

 The bottom line is the Docker client communicates with the Docker daemon,
which then communicates with the containerd daemon, which finally launches an
OCI runtime like runc to launch PID1 of the container. There is a lot of complexity
involved in running containers in this way. Over the years, failures in any of the Dae-
mons have led to all containers shutting down, and it is often difficult to diagnose
what happened. The core Podman engineering team comes from an operating system
background grounded in the Unix philosophy.

18 CHAPTER 1 Podman: A next-generation container engine
Unix and C were designed with the fork/exec model of computing. Basically, when
you execute a new program, a parent program like the Bash shell forks a new pro-
cess and then executes the new program as a child of the old program. The Podman
engineering team thought they could make containers simpler by building a tool that
pulls container images from a container registry, configures container storage, and
then launches an OCI runtime, which starts the container as a child of your con-
tainer engine.

 In the Unix operating system, processes can share content via the filesystem and
inter-process communication (IPC) mechanisms. These features of the operating
system enable multiple container engines to share storage without requiring a dae-
mon to be running to control access and share content. The engines do not need
to communicate together aside from using locking mechanisms provided by the
operating system’s filesystems. Future chapters examine the advantages and disad-
vantages of this mechanism. Figure 1.9 shows the Podman architecture and com-
munication flow.

Docker
client

RESTful API API

2. The Docker client
connects to the
Docker daemon
over a Unix socket.

6. The OCI runtime
fork/execs containerThe kernel does not see

a relationship between

the client and container.

1. The user launches
a Docker client.

Docker
daemon
(engine)

3. The Docker daemon
connects to the
containerd daemon
over the Unix socket.

containerd

daemon

OCI
runtime

Container

4. ontainerdc
fork/execs the
OCI runtime.

5. The OCI runtime
configures the kernel
for the container.

Container host Linux

kernel

Figure 1.8 Docker client-server architecture. The container is a direct descendant of containerd,
not the Docker client. The kernel sees no relationship between the client program and the container.

191.3 Why use Podman when you have Docker?
1.3.4 Podman is daemonless

Podman is fundamentally different from Docker because it is daemonless. Podman
can run all of the same container images as Docker and launch containers with the
same container runtimes. However, Podman does this without having multiple contin-
uously root-running daemons.

 Imagine you have a web service that you want to run at boot time. The web service
is packaged in a container, so you need a container engine. In the Docker case, you
need to set it up to be running on your machine with each of the daemons running
and accepting connections. Next, launch the Docker client to start the web service.
Now you have your containerized application running as well as all of the Docker dae-
mons. In the Podman case, use the Podman command to launch your container, and
Podman will go away. Your container will continue to run without the overhead of run-
ning the multiple daemons. Less overhead is incredibly popular on low-end machines
like IOT devices and edge servers.

1.3.5 User-friendly command line

One of the great features of Docker is the simple command-line interface. There have
been other container command lines like RKT, lxc, and lxcd, but they have their own
command-line interfaces. The Podman team realized early on that it wouldn’t gain
market share if Podman had its own command-line interface. Docker was the domi-
nant tool, and almost everyone who had played with containers had done it with its
CLI. In addition, if you were to search how to do something with a container online,

Podman

(engine)

Fork/exec

How Podman runs a container

Fork/exec

OCI

runtime

Container

Container host Linux

kernel

Configure
the kernel for
the container.

Figure 1.9 Podman fork/exec architecture.
The user launches Podman, which executes
the OCI runtime, which then launches the
container. The container is a direct
descendant of Podman.

20 CHAPTER 1 Podman: A next-generation container engine
invariably you would get an example using the Docker command line. Right from the
start, Podman had to match the Docker command line. A motto for replacing Docker
with Podman was quickly developed: alias Docker = Podman.

 With this command, you can continue to type in your Docker commands, but Pod-
man runs your containers. If the Podman command line differs from Docker, it is con-
sidered a bug in Podman, and users demand Podman to be fixed to make the tools
match. There are a few commands, such as Docker Swarm, that Podman doesn’t sup-
port, but for the most part, Podman is a complete replacement for the Docker CLI.

 Many distributions supply a package called podman-docker, which changes the
alias from docker to podman and links the man page. The alias means when you type
docker ps, the podman ps command runs. If you execute man docker ps, the Podman
ps man pages show up. Figure 1.10 is a twitter message from a Podman user who
aliased the docker command to podman, and was surprised to remember he had been
using Podman for two months while thinking he was using Docker.

Back in 2018, Alan Moran tweeted, “I completely forgot that ~2 months ago I set up
‘alias docker=“podman”’ and it has been a dream. #nobigfatdaemons…”. Joe Thom-
son responded, “So, what reminded you?” and Alan Moran answered “docker help.”
And Podman help showed up.

Figure 1.10 Tweet about “alias docker=’podman’”

211.3 Why use Podman when you have Docker?
1.3.6 Support for REST API

Podman can be run as a socket-activated REST API service. This allows remote clients
to manage and launch Podman containers. Podman supports the Docker API as well
as the Podman API for advanced Podman features. Through the use of the Docker
API, Podman supports docker-compose and other users of the docker-py Python bind-
ings. This means that even if you built your infrastructure around using the Docker
socket for launching containers, you can simply replace Docker with the Podman ser-
vice and continue to use your existing scripts and tools. Chapter 9 covers the Podman
service.

 The Podman REST API also allows remote Podman clients on Mac, Windows, and
Linux systems to interact with Podman containers on a Linux machine. Appendixes E
and F cover Podman use on Mac and Windows machines.

1.3.7 Integration with systemd

Systemd is the fundamental init system in the operating systems. The init process on a
Linux system is the first process that is started by the kernel on boot. Therefore, the
init system is the ancestor of all processes and can monitor them all. Podman wants to
fully integrate the running of containers with the init system. Users want to use sys-
temd to start and stop containers at boot time. Containers should do the following:

 Support systemd within a container
 Support socket activation
 Support systemd notifications that a containerized application is fully activated
 Allow systemd to fully manage the cgroups and lifespan of a containerized

application

Basically, containers work as services in systemd unit files. Many developers want to
run systemd within a container to run multiple system-defined services within a con-
tainer.

 However, the upstream Docker community disagrees with this and has denied all
pull requests that attempt to integrate systemd into Docker. They believe Docker
should manage the life cycle of the container, and they do not want to accommodate
users who want to run systemd in a container.

 The upstream Docker community believes the Docker daemon, as opposed to sys-
temd, should be the controller of processes, it should manage the life cycle of contain-
ers, and it should start and stop them at boot time. The problem is there are many
more features in systemd than in Docker, including startup ordering, socket activa-
tion, service ready notifications, and so on. Figure 1.11 is an actual badge of a Docker
employee at the first DockerCon, illustrating their hostility towards systemd.

 When Podman was designed, the developers wanted to make sure it fully inte-
grated with systemd. When you run systemd inside a container, Podman sets up the
container the way systemd expects and allows it to simply run as PID1 of the container
with limited privileges. Podman allows you to run services within the container the

22 CHAPTER 1 Podman: A next-generation container engine
same way they run on a system or in a VM: via systemd unit files. Podman supports
socket activation, service notifications, and many other systemd unit file features. Pod-
man makes it simple to generate systemd unit files with best practices for running con-
tainers within a systemd service. For more information, see chapter 7 on systemd
integration.

 The Containers project (https://github.com/containers) where Podman, con-
tainer libraries, and other container management tools reside, wants to embrace all
features of the operating system and fully integrate it. Chapter 7 explains Podman
integration with systemd.

1.3.8 Pods

One advantage of Podman is described in its name. As mentioned earlier, Podman is
actually short for Pod Manager. As the official Kubernetes documentation puts it, “A
pod (as in a pod of seals, hence the logo, or pea pod) is a group of one or more con-
tainers, with shared storage/network resources, and a specification for how to run the
containers.” Podman works with either a single container at a time, like Docker, or it
can manage groups of containers together in a pod. One of the design goals of con-
tainers is to separate services into single containers: microservices. Then you combine
containers together to build larger services. Pods allow you to group multiple services
together to form a larger service managed as a single entity. One of the goals of Pod-
man is allowing you to experiment with pods. Figure 1.12 shows two pods running on
a system, each pod containing three containers.

 Podman has the podman generate kube command, which allows you to generate
Kubernetes YAML files from running containers and pods, as you can see in chapter 7.

Figure 1.11 Docker employee badge
at DockerCon EU

https://github.com/containers

231.3 Why use Podman when you have Docker?
Similarly, it has the podman play kube command, which allows you to play Kubernetes
YAML files and generate pods and containers on your host. I suggest using Podman
for running pods and containers on a single host and using Kubernetes to take your
pods and containers and run them on multiple machines and all through your infra-
structure. Other projects, like kind (https://kind.sigs.k8s.io/docs/user/rootless), are
experimenting with running pods with Podman under the guidance of Kubernetes.

1.3.9 Customizable registries

Container engines like Podman support the concept of pulling images using short
names, such as ubi8, without specifying the registry in which they reside: registry.access
.redhat.com. Complete image names include the name of the container registry they

Physical machine

OS dependencies

Kernel space

Physical hardware

Pod 1 Pod 2

Container

image

Infra

container

Infra

container

Container

image

Container

image

Container

image

Container

image

Container

image

Application 1 Application 2 Application 3 Application 4

OS

dependencies

OS

dependencies

OS

dependencies

OS

dependencies

OS

dependencies

OS

dependencies

Figure 1.12 Two pods running on a host. Each pod runs two different containers along with the infra container.

https://kind.sigs.k8s.io/docs/user/rootless
http://registry.access.redhat.com
http://registry.access.redhat.com
http://registry.access.redhat.com

24 CHAPTER 1 Podman: A next-generation container engine
were pulled from: registry.access.redhat.com/library/ubi8:latest. Table 1.3 shows the
components of the image name broken out.

Docker is hardcoded to always pull from https://docker.io when using a short name. If
you want to pull an image from a different container registry, you must fully specify the
image. In the following example, I attempt to pull ubi8/httpd-24, and it fails because
the container image is not on docker.io. The image is on registry.access.redhat.com:

docker pull ubi8/httpd-24
Using default tag: latest
Error response from daemon: pull access denied for ubi8/httpd-24,
repository does not exist or may require 'docker login': denied: requested
access to the resource is denied

So if I want to use ubi8/httpd-24, I am forced to type the entire name, including the
registry:

docker pull registry.access.redhat.com/ubi8/httpd-24

The Docker engine gives docker.io an advantage over other container registries as the
preferred registry. Podman was designed to allow you to specify multiple registries,
like what you can do with dnf, yum, and apt tools for installing packages. You can even
remove docker.io from the list. If you attempt to pull ubi8/httpd-24 with Podman,
Podman presents you with a list of registries to choose from:

$ podman pull ubi8/httpd-24
? Please select an image:
 registry.fedoraproject.org/ubi8/httpd-24:latest
 ▸ registry.access.redhat.com/ubi8/httpd-24:latest
 docker.io/ubi8/httpd-24:latest
 quay.io/ubi8/httpd-24:latest

Once you make your decision, Podman records the short-name alias and no longer
prompts and uses the previously selected registry. Podman supports lots of other fea-
tures, like blocking registries, only pulling signed images, setting up image mirrors,
and specifying hardcoded short names, so specific short names map directly to the
long names (see chapter 5).

Table 1.3 Short name to container image name table

Name Registry Repo Name Tag

Short name ubi8

Complete name registry.access.redhat.com library ubi8 latest

http://registry.access.redhat.com/library/ubi8:latest
https://docker.io
http://registry.access.redhat.com

251.3 Why use Podman when you have Docker?
1.3.10 Multiple transports

Podman supports many different container image sources and targets called transports
(see table 1.4). Podman can pull images from container registries and from local con-
tainers storage but also supports images stored in OCI format, OCI TAR format, leg-
acy Docker TAR format, directory format, and images directly from the Docker
daemon. Podman commands can easily run images from each of the formats.

1.3.11 Complete customizability

Container engines tend to have lots of built-in constants, like the namespaces they run
with, whether or not SELinux is enabled, and which capabilities containers run with.
With Docker, most of these values are hardcoded and cannot be changed by default.
Podman, on the other hand, has a very customizable configuration.

 Podman has its built-in defaults but defines three locations for its configuration
files to be stored:

 /usr/share/containers/containers.conf—Where a distribution can define the changes
the distribution likes to use

 /etc/containers/containers.conf—Where they can set up system overrides
 $HOME/.config/containers/containers.conf—Can be specified only in rootless mode

The configuration files allow you to configure Podman to run the way you want by
default. You can even run with more security by default if you choose.

Table 1.4 Podman-supported transports

Transport Description

Container registry
(docker)

References a container image stored in a remote container image registry
website. Registries store and share container images (e.g., docker.io and
quay.io).

oci References a container image compliant with OCI layout specifications. The
manifest and layer tarballs are located in the local directory as individual files.

dir References a container image compliant with the Docker image layout, similar
to the oci transport but storing the files using the legacy docker format.

docker-archive References a container image in a Docker image layout that is packed into a
TAR archive.

oci-archive References a container image compliant with OCI layout specifications that is
packed into a TAR archive.

docker-daemon References an image stored in the Docker daemon’s internal storage.

container-storage References a container image located in a local storage. Podman defaults to
using container storage for local images.

26 CHAPTER 1 Podman: A next-generation container engine
1.3.12 User-namespace support

Podman is fully integrated with the user namespace. Rootless mode relies on user
namespaces, which allows for multiple UIDs to be assigned to a user. User namespaces
provide isolation between users on a system, so you can have multiple rootless users
running containers with multiple user IDs, all isolated from each other.

 A user namespace can be used to isolate containers from each other. Podman makes
it simple to launch multiple containers, each with a unique user namespace. The kernel
then isolates the processes from host users as well as each other based on UID separation.

 Docker only supports running containers in a single, separate, user namespace,
meaning all containers run within the same user namespace. Root in one container is
the same as root in another container. It does not support running each container in
a different user namespace, which means containers attack each other from a user-
namespace perspective. Even though Docker supports this mode, almost no one runs
containers with Docker in a separate user namespace.

1.4 When not to use Podman
Like Docker, Podman is not a container orchestrator. Podman is a tool for running con-
tainer workloads on a single host in either rootless or rootful mode. Higher-level tools
are required if you want to orchestrate running containers on multiple machines.

 I believe the best tool for doing this now is Kubernetes. Kubernetes won the con-
tainer orchestrator war when it comes to mind share. Docker has an orchestrator
called Swarm, which had some popularity, but it now seems to be out of favor. Because
the Podman team believes Kubernetes is the way to go for containers on multiple
machines, Podman does not support Swarm functionality. Podman has been used for
different orchestrators and is used for grid/HPC computing, and open source devel-
opers have even added it to Kubernetes frontends.

Summary
 Containers technology has been around for many years, but the introduction of

container images and container registries allows developers a better way to ship
software.

 Podman is an excellent container engine, suitable for almost all of your single-
node container projects. It is useful for developing, building, and running con-
tainerized applications.

 Podman is as simple to use as Docker, with the exact same command-line interface.
 Podman supports a REST API, which allows remote tools and languages, includ-

ing docker-compose, to work with Podman containers.
 Unlike Docker, Podman includes such notable features as user-namespace sup-

port, multiple transports, customizable registries, integration with systems, the
fork/exec model, and out-of-the-box rootless mode.

 Podman is a more secure way to run containers.

Command line
Podman is an excellent tool for running and building containerized applications.
In this chapter, you’ll get started by building a simple web application to demon-
strate commonly used features of the Podman command line.

 If you don’t have Podman installed on your machine, you can jump to appendix
C, and then return here. This chapter assumes that Podman 4.1 or later is already
installed. Older versions of Podman probably work fine, but all examples were
tested with Podman 4.1. The example base image I use is the registry.access.red-
hat.com/ubi8/httpd-24 image.

NOTE Universal Base Images (UBI) can be used anywhere, but container
software maintained and vetted by Red Hat as well as run on a Red Hat
operating system is fully supported. There are hundreds of Apache images
that work similarly to this image that you can also try out.

This chapter covers
 The Podman command line

 Running an OCI application

 Comparing containers and images

 Building an OCI-based image
27

28 CHAPTER 2 Command line
Chapter 2 shows how Podman is a great tool for working with containers. In this chap-
ter, I walk you through running the scenario you might use to build a containerized
application. You launch a container, modify its contents, create an image, and ship it
to a registry. Then I explain how you can do this in an automated way to maintain the
security of your container image. Through it all, you will be exposed to many of the
Podman command-line interfaces and get a good understanding of how to work
with Podman.

 If you are an experienced Docker user, you probably just want to skim through this
chapter. You will know a lot of it, but there are many features unique to Podman, such
as the ability to mount container images (section 2.2.10) and different transports (sec-
tion 2.2.4). Let’s start by running our first container.

NOTE Podman is an open source project under heavy development. Podman
is packaged and provided on many different Linux distributions as well as
Mac and Windows. These distributions might be shipping older versions of
Podman without some of the current features covered in this book. Some
examples in this book assume you are using Podman 4.1 or later. If an exam-
ple does not work, please update your version of Podman to the latest version.
Refer to appendix C for further information on installing Podman.

2.1 Working with containers
There are thousands of different container images sitting at container registries.
Developers, administrators, quality engineers, and general users primarily use the
podman run command to pull down and run, test, or explore these container images.
To start building out containerized applications, the first thing you need to do is start
working with a base image. In our examples, you pull and run the registry.access.red-
hat.com/ubi8/httpd-24 image to container storage in your home directory and start
exploring inside the container.

2.1.1 Exploring containers

In this section, you will examine a typical Podman command, step by step. You will exe-
cute the podman run command, which reaches out to the registry.access.redhat.com
container registry and begins pulling down the image and storing it locally in your
home directory:

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash

Now I will break down the command you just executed. By default the podman run
command executes the containerized command in the foreground until the con-
tainer exits. In this case, you end up at a Bash prompt running within the container
and showing the bash-4.4$ prompt. When you exit this Bash prompt, Podman stops
the container.

292.1 Working with containers
 In this example, you used two options: -t and -i, as -ti, which tells Podman to
hook up to the terminal. This connects to the input, output, and error stream of the
bash process within the container to your screen, which allows you to interact within
the container:

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash

The --rm option tells Podman to delete the container as soon as the container exits,
freeing up all of the container’s storage:

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash

Next, specify the container image, registry.access.redhat.com/ubi8/httpd-24, you are
working with. The podman command reaches out to the container registry at regis-
try.access.redhat.com and begins copying down the ubi8/httpd-24:latest image. Pod-
man copies multiple layers (aka blobs), as shown in the following listing, and stores
them in the local container storage. You see the progress as the image layers are pulled
down. Some images are rather large and can take a long time while being pulled down.
If you later run a different container on the same image, Podman skips the image-pull-
ing step, since you already have the correct image in local container storage.

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash
Trying to pull registry.access.redhat.com/

➥ ubi8/httpd-24:latest...
Getting image source signatures
Checking if image destination supports signatures
Copying blob 296e14ee2414 skipped: already exists
Copying blob 356f18f3a935 skipped: already exists
Copying blob 359fed170a21

➥ [========================>---------] 11.8MiB / 16.2MiB
Copying blob 226cafc3a0c6

➥ [=====>----------------------------]

➥ 10.1MiB / 61.1MiB

Finally, specify the executable to be run within the container, in this case, bash:

$ podman run -ti --rm registry.access.redhat.com/ubi8/httpd-24 bash
…
bash-4.4$

NOTE Images almost always have default commands they execute. You only
have to specify a command if you want to override the default application the
image runs with. In the case of the registry.access.redhat.com/ubi8/httpd-24
image, it runs the Apache web server.

Listing 2.1 Pulling and running a container image from a registry

Contact with
the registry

Layer
pulling is
skipped.

30 CHAPTER 2 Command line
While inside the bash shell container, cat /etc/os-release, and notice it is likely a differ-
ent OS or a different version than the /etc/os-release outside the container. Explore
around in the container, and notice how different it is from your host environment:

bash-4.4$ grep PRETTY_NAME /etc/os-release
PRETTY_NAME="Red Hat Enterprise Linux 8.4 (Ootpa)"

On my host on a different terminal, the same command outputs

$ grep PRETTY_NAME /etc/os-release
PRETTY_NAME="Fedora Linux 35 (Workstation Edition Prerelease)"

Back inside the container, you will notice there are a lot fewer commands available:

bash-4.4$ ls /usr/bin | wc -l
525

However, on the host you see

$ ls -l /usr/bin | wc -l
3303

Execute the ps command to see what processes are running inside of the container:

$ ps
PID TTY TIME CMD
1 pts/0 00:00:00 bash
2 pts/0 00:00:00 ps

You only see two processes: the bash script and the ps command. Needless to say, on
my host machine, there are hundreds of processes running (including these two pro-
cesses). You can further explore the inside of the container to gain an understanding
of what is going on within a container.

 When you are done, you exit the bash script, and the container shuts down. Since
you ran with the --rm option, Podman removes all the container storage and deletes
the container. The container image remains in container/storage. Now that you have
explored the inner workings of a container, it is time to start working with the default
application within the container.

2.1.2 Running the containerized application

In the previous example, you pulled and ran bash within a containerized application,
but you did not run the application the developer intended you to run. In this next
example, you will run the actual application by removing the command and running
with a couple of new options.

312.1 Working with containers
 First, remove the -ti and the --rm options, since you want the container to remain
running when the podman command exits. You are not a shell running within the con-
tainer interactively, since it is just running the containerized web service:

$ podman run -d -p 8080:8080 --name myapp registry.access.redhat.com/ubi8/httpd-24
37a1d2e31dbf4fa311a5ca6453f53106eaae2d8b9b9da264015cc3f8864fac22

The first option to notice is the -d (--detach) option, which tells Podman to launch
the container and then detach from it. Basically, run the container in the background.
The Podman command actually exits and leaves the container running. Chapter 6
goes much deeper into what is going on behind the scenes:

$ podman run -d -p 8080:8080 --name myapp
registry.access.redhat.com/ubi8/httpd-24

The -p (--publish) option tells Podman to publish or bind the container port 8080
to the host port 8080 when the container is running. With the -p option, the field
before the colon refers to the host port, while the field after the colon refers to the
container port. In this case, you see that the ports are the same. If you specify only one
port, Podman considers this port a container port and randomly picks a host port on
which the container port is bound. You can use the podman port command to discover
which ports are bound to a container.

$ podman port myapp
8080/tcp -> 0.0.0.0:8080

By default, containers are created within their own network namespace, meaning they
are not bound to the host network but to their virtualized network. Suppose I execute
the container without the -p option. In that case, the Apache server within the con-
tainer binds to the network interface within the container’s network namespace, but
Apache is not bound to the host network.

 Only processes within the container are able to connect to port 8080 to communi-
cate with the web server. By executing the command with the -p option, Podman con-
nects the port from inside the container to the host network at the specified port. The
connection allows external processes like a web browser to read from the web service.

NOTE If you are running containers in rootless mode, covered in chapter 3,
Podman users are by default not permitted to bind to ports < 1024 by the kernel.
Some containers want to bind to lower ports like port 80, which is allowed inside
the container, but -p 80:80 fails, since 80 is less than 1024. Using -p 8080:80
causes Podman to bind the host’s port 8080 to port 80 within the container. The
upstream Podman repo contains troubleshooting information on problems like
binding to ports less than 1024 and many others (see http://mng.bz/69ry).

Listing 2.2 Example of the podman port command

Shows that port 8080/tcp inside the
container is bound to all of the host
networks (0.0.0.0) at port 8080

http://mng.bz/69ry

32 CHAPTER 2 Command line
The -p option can map port numbers inside the container to different port numbers
outside the container:

$ podman run -d -p 8080:8080 --name myapp
registry.access.redhat.com/ubi8/httpd-24

In the example name, the container myapp is using the --name myapp option. Specify-
ing a name makes it easier to find the container, and it allows you to specify a name
that can then be used for other commands (e.g., podman stop myapp). If you don’t
specify a name, Podman automatically generates a unique container name along with
a container ID. All of the Podman commands that interact with containers can use
either the name or the ID:

$ podman run -d --name myapp -p 8080:8080
registry.access.redhat.com/ubi8/httpd-24

When the podman run command completes, the container is running. Since this con-
tainer is running in detached mode, Podman prints out the container ID and exits,
but the container remains running:

$ podman run -d -p 8080:8080 --name myapp
registry.access.redhat.com/ubi8/httpd-24

37a1d2e31dbf4fa311a5ca6453f53106eaae2d8b9b9da264015cc3f8864fac22

Now that the container is running, you can launch a web browser to communicate
with the web server inside of the container at localhost port 8080 (see figure 2.1):

$ web-browser localhost:8080

Congratulations! You have launched your first containerized application.
 Now imagine you want to start another container. You can execute a similar com-

mand with just a couple of changes:

$ podman run -d -p 8081:8080 --name myapp1 \

➥ registry.access.redhat.com/ubi8/httpd-24
fa41173e4568a8fa588690d3177150a454c63b53bdfa52865b5f8f7e4d7de1e1

Notice you need to change the name of the container to myapp1; otherwise, the podman
run command fails with the myapp name because the container previously existed.
Also you need to change the -p option to use 8081 for the host port because the previ-
ous container, myapp, is currently running and is bound to port 8080. The second con-
tainer isn’t allowed to bind to port 8080 until the first container exits:

$ podman run -d -p 8081:8080 --name myapp1
registry.access.redhat.com/ubi8/httpd-24

The podman create command is almost identical to the podman run command. The
create command pulls the image if it is not in container storage and configures the

332.1 Working with containers
container information to make it ready to run but never executes the container. It is
often used together with the podman start command described in section 2.1.4. You
might want to create a container and then later use a systemd unit file to start and stop
the container.

 Some notable podman run options include the following:

 --user USERNAME—This tells Podman to run the container as a specific user
defined in the image. By default, Podman will run the container as root, unless
the container image specifies a default user.

Figure 2.1 Web browser window connecting to the ubi8/httpd-24 container running in Podman

34 CHAPTER 2 Command line
 --rm—This automatically removes the container when it exits.
 --tty -(t)—This allocates a pseudo -tty and attaches it to the standard input

of the container.
 --interactive (-i)—This connects stdin to the primary process of the con-

tainer. These options give you an interactive shell within the container.

NOTE There are dozens of podman run options available, allowing you to
change security features, namespaces, volumes, and so on. Some of these I
use and explain throughout the book. Refer to the podman-run man page for
a description of all of the options. Most of the podman create options defined
in table 2.1 are also available for podman run.

Use the man podman-run command for information about all options. Now that the
container is up and running, it is time to stop the container and go to the next step.

2.1.3 Stopping containers

You have two containers running and have tested them by running a web browser
against them. To continue the development by actually adding some content to the
web page, you can stop the containers using the podman stop command:

$ podman stop myapp

The stop command stops the container started with the previous podman run command.
 When stopping a container, Podman examines the running container and sends a

stop signal, usually SIGTERM, to the primary process (PID1) of the container, and then
by default it waits 10 seconds for the container to stop. The stop signal tells the pri-
mary process within the container to exit gracefully. If the container doesn’t stop
within 10 seconds, Podman sends the SIGKILL signal to the process, forcing the con-
tainer to stop. The 10-second wait gives the processes in the container time to clean
up and commit changes.

 The default stop signal can be changed for a container using the podman run
--stop-signal option. Sometimes the primary or init process of a container ignores
SIGTERM (e.g., containers that use systemd as the primary process inside a container).
systemd ignores SIGTERM and specifies that it shuts down using the SIGRTMIN+3 (signal
#37) signal. The stop signal can be embedded in container images, as I describe in
section 2.3.

 Some containers ignore the SIGTERM stop signal, which means you have to wait 10
seconds for the container to exit. If you know the container ignores the default stop
signal, and you don’t care about the container cleaning up, you can just add the -t 0
option to podman stop to send the SIGKILL signal right away:

$ podman stop -t 0 myapp1
myapp1

352.1 Working with containers
Podman has a similar command, podman kill, which sends the specified kill signal.
The podman kill command can be useful when you want to send signals into the con-
tainer without actually stopping the container.

 Some notable Podman stop options include the following:

 --timeout (-t)—This sets the timeout; -t 0 sends the SIGKILL without waiting
for the container to stop.

 --latest (-l)—This is a useful option to allow you to stop the last created con-
tainer rather than having to use the container name or container ID. Most Pod-
man commands that require you to specify a container name or ID also accept
the --latest option. This is only available on Linux machines.

 --all—This tells Podman to stop all running containers. Similarly to --latest,
Podman commands that require a container name or container ID parameter
also take the --all option.

Use the man podman-stop command for information about all options.
 Eventually, your system will have lots of stopped containers, and sometimes you

will need to restart them (e.g., if the system was rebooted). Another common use
case is to first create a container and later start it. The next section explains how to
start a container.

2.1.4 Starting containers

The container you created has now been stopped. Next, you may want to start it back
up again using the command in the following listing.

$ podman start myapp
myapp

The podman start command starts one or more containers. This command will output
the container ID, indicating that your container is up and running. You can now recon-
nect to it with a web browser. One common use case for podman start is starting a con-
tainer after a reboot to start all of the containers that were stopped during shutdown.

 Some favorite Podman start options include these:

 --all—This starts all of the stopped containers in container storage.
 --attach—This attaches your terminal to the output of the container.
 --interactive (-i)—This attaches the terminal input to the container.

Use the man podman-start command for information about all options.
 After you’ve been using Podman for a while and have pulled down and run many

different container images, you might want to figure out which containers are run-
ning or which containers you have in local storage. You will need to be able to list
these containers.

Listing 2.3 Example of starting a container

The start command prints the names
of the containers that were started.

36 CHAPTER 2 Command line
2.1.5 Listing containers

You can list the running containers and all of the containers that were previously cre-
ated. Use the podman ps command to list containers:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED \

➥ STATUS PORTS NAMES
b1255e94d084 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-\

➥ http... 6 minutes ago Up 4 minutes ago 0.0.0.0:8080->8080/tcp myapp

Notice the podman ps command by default lists the running containers. Use the --all
option to see all of the containers:

$ podman ps --all
CONTAINER ID IMAGE COMMAND CREATED \

➥ STATUS PORTS NAMES
b1255e94d084 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-\

➥ http... 9 minutes ago Up 8 minutes ago 0.0.0.0:8080->8080/tcp myapp
3efee4d39965 registry.access.redhat.com/ubi8/httpd-24:latest /usr/bin/run-\

➥ http... 7 minutes ago Exited (0) 3 minutes ago 0.0.0.0:8081->8080/tcp myapp1

Some notable podman ps options include the following:

 --all—This tells Podman to list all containers rather than just running con-
tainers.

 --quiet—This tells Podman to only print the container IDs.
 --size—This tells Podman to return the amount of disk space currently used

for each container other than the images they are based on.

Use the man podman-ps command for information about all options. Now that you know
all of the containers you have on the system, you might want to inspect their internals.

2.1.6 Inspecting containers

To fully understand a container, sometimes you want to know which image a container
was based on, which environment variables a container gets by default, or what the
security settings used for a container are. The podman ps command gives us some data
about the containers, but if you want to really examine information about the con-
tainer, you can use the podman inspect command.

 The podman inspect command can also be used to inspect images, networks, vol-
umes, and pods. The podman container inspect command is also available and spe-
cific to containers. But most users just type the shorter podman inspect command:

$ podman inspect myapp
[
 {
 "Id":

"240271ae90480d3836b1477e5c0b49fbd3883846ca474e3f6effdfb271f4ff54",
 "Created": "2021-09-27T05:27:47.163828842-04:00",
 "Path": "container-entrypoint",

372.1 Working with containers
 "Args": [
 "/usr/bin/run-httpd"
],
…
]

As you can see, the podman inspect command outputs a large JSON file—307 lines on
my machine. All of this information is eventually handed down the OCI runtime to
launch the container. When using the inspect command, it is often better to pipe its
output to less or grep to find particular fields you are interested in. Alternatively, you
can use the format option. If you want to examine the command executed when you
start the container, execute the following.

$ podman inspect --format '{{ .Config.Cmd }}' myapp
[/usr/bin/run-httpd]

Or if you want to see the stop signal, execute the following.

$ podman inspect --format '{{ .Config.StopSignal }}' myapp
15

Some notable podman inspect options include the following:

 --latest (-l)—This is handy in that it allows you to quickly inspect the last
created container rather than specifying the container name or container ID.

 --format—This is useful, as shown previously, to extract particular fields out of
the JSON.

 --size—This adds the amount of disk space the container is using. Gathering
this information takes a long time, so it is not done by default.

Use the man podman-inspect command for information about all options. After you
inspect a container, you might realize you no longer need that container taking up
storage, so you need to remove it.

2.1.7 Removing containers

If you are done using a container, you may want to remove the container to free up
disk space or reuse the container name. Remember when you started a second con-
tainer called myapp1? You no longer need it, so you can remove it. Make sure to stop
the container (section 2.1.3) before removing it. Then use the podman rm command to
remove container:

$ podman rm myapp1
3efee4d3996532769356ffea23e1f50710019d4efc704d39026c5bffd6aa18be

Listing 2.4 Inspecting a specified command to execute the container

Listing 2.5 Inspecting the stop signal to be used when stopping the container

inspect is displaying
data from the OCI
image specification.

The default stop signal for all
containers is 15 (SIGTERM).

38 CHAPTER 2 Command line
Some notable podman rm options include the following:

 --all—This option is useful if you want to remove all your containers.
 --force—This option tells Podman to stop all the running containers when

removing.

Use the man podman-rm command for information about all options. Now that you
understand a few commands, it is time to start modifying the running container.

2.1.8 exec-ing into a container

Often, when a container is running, you might want to start another process within
the container to debug or examine what is going on. In some cases, you may want to
modify some of the content the container is using.

 Imagine you want to go into your container and modify the web page it is show-
ing. You can exec into the container using the podman exec command. Use the
--interactive (-i) option to allow you to execute commands within the container.
You need to specify the name of the container myapp and execute the Bash script
while in the container. If you stopped the myapp container, you need to restart it, since
podman exec only works on running containers.

 In the following example, you will exec a bash process into the container to create
the /var/www/html/index.html file. You will write HTML content that causes the
containerized website to display Hello World:

 $ podman exec -i myapp bash -c 'cat > /var/www/html/index.html' << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
_EOF

exec-ing back into the container a second time, you can see that the file was success-
fully modified. This shows that modifications to a container via exec are permanent to
the container and will remain even if you stopped and restarted the container. A key
difference between podman run and podman exec is that run creates a new container
off of an image with processes running inside, while exec starts processes inside of
existing containers:

$ podman exec myapp cat /var/www/html/index.html
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>

392.1 Working with containers
Now let’s connect a web browser to the container to see if the content has changed
(see figure 2.2):

$ web-browser localhost:8080

Some notable podman exec options include the following:

 --tty—This connects a -tty to the exec session.
 --interactive—The -i option tells Podman to run in interactive mode, mean-

ing you can interact with an exec-ed program, like a shell.

Use the man podman-exec command for information about all options.
 Now that you have created an application, you might want to share it with others.

First, you need to commit the container to an image.

2.1.9 Creating an image from a container

Developers often run containers from a base image to create a new container envi-
ronment. Once they are done, they pack this environment into a container image to
be able to share it with other users. Those users can then use Podman to launch the
containerized application. You can do this with Podman by committing the con-
tainer to an OCI image.

 First, stop or pause the container to make sure nothing gets modified while you
are committing it:

$ podman stop myapp

Now you can execute the podman commit command to take your application container,
myapp, and commit it, creating a new image named myimage:

$ podman commit myapp myimage
Getting image source signatures
Copying blob e39c3abf0df9 skipped: already exists
Copying blob 8f26704f753c skipped: already exists
Copying blob 83310c7c677c skipped: already exists
Copying blob 654b3bf1361e skipped: already exists
Copying blob 9e816183404c done Copying config e38084bb8a done
Writing manifest to image destination
Storing signatures
e38084bb8a76104a7cac22b919f67646119aff235bb1cfcba5478cc1fbf1c9eb

Figure 2.2 Web browser window connecting to the ubi8/httpd-24 container running in Podman
with updated Hello World HTML

40 CHAPTER 2 Command line
Now you can continue running the existing myapp container by calling podman start,
or you can create a new container based on myimage:

$ podman run -d --name myapp1 -p 8080:8080 myimage
0052cb32c8e63b845ac5dfd5ba176b8204535c2c6cafa3277453424de601263f

NOTE Using the podman commit command to create an image is not a com-
mon method. The entire process of building container images can be
scripted and automated using podman build. See section 2.3 for more infor-
mation on this process.

Some notable podman commit options include the following:

 --pause—This pauses a running container during the commit. Notice I stopped
the container before doing the commit, while I could have simply paused it.
The podman pause and podman unpause commands allow you to pause and
unpause containers directly.

 --change—This option allows you to commit instructions on using the image.
The instructions are CMD, ENTRYPOINT, ENV, EXPOSE, LABEL, ONBUILD, STOPSIGNAL,
USER, VOLUME, and WORKDIR. These instructions match up with the directives in
the Containerfile or Dockerfile.

Use the man podman-commit command for information about all options. Table 2.1
lists all the Podman container commands.

 Now that you have committed your container to an image, it is time to show how
Podman can work with images.

NOTE You have examined a few of the Podman container commands, but
there are many more. Use the podman-container(1) man pages to explore
all of them as well as a full description of commands specified in this section.

Table 2.1 Podman container commands

Command Man page Description

attach podman-container-attach(1) Attach to a running container.

checkpoint podman-container-checkpoint(1) Checkpoint a container.

cleanup podman-container-cleanup(1) Clean up network and mount points of a
container.

commit podman-container-commit(1) Commit a container into an image.

cp podman-container-cp(1) Copy files or folders into and out of
containers.

create podman-container-create(1) Create a new container.

diff podman-container-diff(1) Inspect changes in a container’s filesystem.

exec podman-container-exec(1) Run a process in a container.

412.2 Working with container images
2.2 Working with container images
In the previous section, you tried basic operations with containers, including inspect-
ing and committing to a container image. In this section, you will try working with
container images, learn how they differ from containers, and learn how to share them
through container registries.

exists podman-container-exists(1) Check if a container exists.

export podman-container-export(1) Export a container's filesystem as a TAR
archive.

init podman-container-init(1) Init a container.

inspect podman-container-inspect(1) Display detailed information on a container.

kill podman-container-kill(1) Send a signal to the primary process in
the container.

List (ps) podman-container-list(1) List all of the containers.

logs podman-container-logs(1) Fetch logs for a container.

mount podman-container-mount(1) Mount a container's root filesystem.

pause podman-container-pause(1) Pause container.

port podman-container-port(1) List port mappings for a container.

prune podman-container-prune(1) Remove all non-running containers.

rename podman-container-rename(1) Rename an existing container.

restart podman-container-restart(1) Restart a container.

restore podman-container-restore(1) Restore a checkpointed container.

rm podman-container-rm(1) Remove a container.

run podman-container-run(1) Run a command in a new container.

runlabel podman-container-runlabel(1) Execute the command described by an
image label.

start podman-container-start(1) Start a container.

stats podman-container-stats(1) Display statistics for a container.

stop podman-container-stop(1) Stop a container.

top podman-container-top(1) Display running process in a container.

unmount podman-container-unmount(1) Unmount a container's root filesystem.

unpause podman-container-unpause(1) Unpause all the containers in a pod.

wait podman-container-wait(1) Wait for a container to exit.

Table 2.1 Podman container commands (continued)

Command Man page Description

42 CHAPTER 2 Command line
2.2.1 Differences between a container and an image

One of the problems with computer programming is that the same names are con-
stantly used for different purposes. In the container world, there is no more overused
term than container. Often container refers to the running processes launched by Pod-
man. But container can also refer to container data as the non-running objects sitting
in container storage. As you saw in the previous section, podman ps --all shows run-
ning and non-running containers.

 Another example is the term namespace, which is used in many different ways. I
often get confused when people talk about namespaces within Kubernetes. Some peo-
ple hear the term and think of virtual clusters, but when I hear it I think of Linux name-
spaces used with Pods and Containers. Similarly, image can refer to a VM image, a
container image, an OCI image, or a Docker image stored at a container registry.

 I think of containers as executing processes within an environment or something
that is being prepared to run. In contrast, images are committed containers, which are
prepared to be shared with others. Other users or systems can use these images to cre-
ate new containers.

 Container images are just committed containers. The OCI defines the format of an
image. Podman uses the container/image library (https://github.com/containers/
image) for all of its interaction with images. Container images can be stored in differ-
ent types of storage or transports, as container/image refers to them. These transports
can be container registries, Docker archives, OCI archives, docker-daemon, as well as
containers/storage. See section 2.2.4 for more information on transports.

 In the context of Podman, I usually refer to images as the content stored locally in
a container storage or in container registries like docker.io and quay.io. Podman uses
the GitHub container/storage library (https://github.com/containers/storage) for
handling locally stored images. Let’s take a closer look at it.

 The container/storage library provides the concept of a storage container. Basi-
cally, storage containers are intermediate storage content that hasn’t been committed
yet. Think of them as files on disk and some JSON describing the content. Podman
has its own datastore of data related to a Podman container, and Podman needs to
deal with multiple users of its containers at the same time. It relies on filesystem lock-
ing provided by containers/storage to make sure hundreds of Podman executables
can reliably share the same datastore.

 When you commit a container to storage, Podman copies the container storage to
the image storage. Images are stored in a series of layers, with every commit creating a
new layer.

 I like to think of an image like a wedding cake (figure 2.3). In our previous
example, you used the ubi8/httpd-24 image, which is two layers: the base layer is
ubi8, and then the image provided added the httpd package and a few others to cre-
ate the ubi8/httpd-24. Now when you commit your container in the previous section,
Podman adds another layer on top of the ubi8/httpd-24 image called myimage.

https://github.com/containers/image
https://github.com/containers/image
https://github.com/containers/image
https://github.com/containers/storage

432.2 Working with container images
One handy Podman command for showing the layers of an image is the podman image
tree command:

$ podman image tree myimage
Image ID: 2c7e43d88038
Tags: [localhost/myimage:latest]
Size: 461.7MB
Image Layers
├── ID: e39c3abf0df9 Size: 233.6MB
├── ID: 42c81bd2b468 Size: 20.48kB Top Layer of:

[registry.access.redhat.com/ubi8:latest]
├── ID: 51a7beaa0b88 Size: 57.43MB
├── ID: 519e681b5702 Size: 170.6MB Top Layer of:

[registry.access.redhat.com/ubi8/httpd-24:latest]
└── ID: bc3dcdefdac3 Size: 69.63kB Top Layer of: [localhost/myimage:latest

localhost/myapp:latest]

You can see that the image myimage consists of five layers.
 Another useful Podman command, podman image diff, allows you to see the actual

files and directories that have been changed (C), added (A), or deleted (D) com-
pared to another image or the lower layer:

$ podman image diff myimage ubi8/httpd-24
C /etc/group
C /etc/httpd/conf
C /etc/httpd/conf/httpd.conf
C /etc/httpd/conf.d
C /etc/httpd/conf.d/ssl.conf
C /etc/httpd/tls
C /etc
C /etc/httpd
A /etc/httpd/tls/localhost.crt

registry.acccess.redhat.com/ubi8:latest

Images are layered on top of each
other, inheriting files from the
lower-layer images as well as
adding, removing, and replacing
lower-level files.

localhost/myimage:latest

registry.access.redhat.com/ubi8/httpd-24:latest

The lowest layer is called the
base image. Usually, container
libraries and package management
tools help create new layers.

Figure 2.3 A wedding cake display showing the images making up our Hello World
application.

44 CHAPTER 2 Command line
A /etc/httpd/tls/localhost.key
...

Images are just TAR diffs of software applied on lower-level images, and container
content is an uncommitted layer of software. Once a container is committed, you can
create other containers on top of your image. You can also share the image with oth-
ers, so they can create other containers on your image. Now let’s look at all the images
in your container storage.

2.2.2 Listing images

In the container section, you were working with images and used command podman
images to list the images in local storage:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Let’s look at the different fields in the default output. Table 2.2 describes the different
fields and data available with the podman images command. You will use the podman
images command throughout this section.

NOTE Over time, the amount of storage used by all the images you pull
grows. It is relatively common for users to run out of disk space, so you should
monitor the size of images and containers, removing them when you are no
longer using them. Use the man podman-system-prune command for more
information on cleaning up.

One notable podman image option is the following:

 --all—This option is useful for listing all images. By default, podman-images
lists only the images currently in use. When an image is replaced by a newer

Table 2.2 Default fields listed by the podman images command

Heading Description

Repository Complete name of the image.

TAG Version (tag) of the image. Image tagging is covered in section 2.2.6.

IMAGE ID Unique identifier of the image. It is generated by Podman as a SHA256 hash of the
image's JSON configuration object.

CREATED Elapsed time since the image was created. Images are sorted by this field by default.

SIZE The amount of storage being used by the image.

452.2 Working with container images
image with the same tag, the previous image is tagged as <none><none>; These
images are called dangling images. I cover dangling images in section 2.3.1.

Use the man podman-images command for information about all options. Similarly to
containers, you will likely want to examine the configuration information associated
with an image by inspecting it.

2.2.3 Inspecting images

In the previous sections, I mentioned a couple of commands to examine images. I
used the podman image diff to examine files and directories created or deleted
between images. I also showed you a way to see the image hierarchy or wedding cake
layers of images using the podman image tree command.

 Sometimes you may want to examine the configuration of an image; use the pod-
man image inspect command for this. The podman inspect command can also be
used to inspect images, but the names can conflict with containers, so I prefer to use
the specific image command:

$ podman image inspect myimage
[
 {
 "Id": "3b8fcf9081b4c4e6c16d763b8d02684df0737f3557a1e03ebfe4cc7cd6562135",
 "Digest":
"sha256:ff49aa6253ae47569d5aadbd73d70e7d0431bcf3a2f57b1b56feecdb531029a3",
 "RepoTags": [
 "localhost/myimage:latest"
],
 "RepoDigests": [

"localhost/myimage@sha256:ff49aa6253ae47569d5aadbd73d70e7d0431bcf3a2f57b1b\

➥ 56feecdb531029a3"
],
…
]

As you can see, this command outputs a large JSON array—153 lines in the previous
example—that includes the data used for the OCI Image Format specification. When
you create a container from an image, this information is used as one of the inputs to
create the container.

 When using the inspect command, it is often better to pipe its output to less
or grep to find particular fields you are interested in. Alternatively, you can use the
--format option.

 If you want to to examine the default command to be executed from this image,
execute the following:

$ podman image inspect --format '{{ .Config.Cmd }}' myimage
[/usr/bin/run-httpd]

Or if you want to see the stop signal, execute

$ podman image inspect --format '{{ .Config.StopSignal }}' myimage

46 CHAPTER 2 Command line
As you can see, nothing is output, meaning the developer of the application did not
specify a STOPSIGNAL. When you build a container off of this image, the STOPSIGNAL is
the default, 15, unless you override it via the command line.

 One notable podman image inspect option is the following:

 --format—This is useful as you see above to extract particular fields out of the
json.

Use the man podman-image-inspect command for information about the command.
 Once you are happy with a container and commit it to an image, the next step is

sharing it with others or perhaps running it on another system. You need to push the
image out to other types of container storage, usually a container registry.

2.2.4 Pushing images

In Podman, you use the podman push command to copy an image and all of its layers
out of container storage and push it to other forms of container image storage, like a
container registry. Podman supports a few different types of container storage, which
it calls transports.

CONTAINER TRANSPORTS

Podman uses the containers/image library (https://github.com/containers/image)
for pulling and pushing images. I describe the containers/image project as a library
for copying images between different types of container storage. One storage, as you
have seen, is containers/storage.

 When pushing an image, the [destination] is specified using transport:Image-
Name format. If no transport is specified, the docker (container registry) transport is
used by default.

 One of the novel things that Docker did, as I explained earlier, was invent the
container registry concept—basically, a web server that contains container images.
The docker.io, quay.io, and Artifactory web servers are all examples of container
registries. The Docker engineering team defined a protocol for pulling and pushing
these images from the container registries, which I refer to as the container registry
or docker transport.

 When I want to run a container of an image, I can fully specify the image name,
including the transport like the following command:

$ podman run docker:/ /registry.access.redhat.com/ubi8/httpd-24:latest echo hello
hello

For Podman, docker:// transport is the default; it can be skipped for convenience:

$ podman run registry.access.redhat.com/ubi8/httpd-24:latest echo hello
hello

The myimage image you created in the previous section was created locally, which
means it doesn’t have a registry associated with it. By default, locally created images

https://github.com/containers/image

472.2 Working with container images
have the localhost registry associated with them. You can see the images in the con-
tainers/storage using the podman images command:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

If the image has a remote registry associated with it (e.g., registry.access.redhat.com/
ubi8), it can be pushed without specifying the [destination] field. On the contrary,
since localhost/myimage does not have a registry associated with it, remote registry
needs to be specified (e.g., quay.io/rhatdan):

$ podman push myimage quay.io/rhatdan/myimage
Getting image source signatures
Copying blob 164d51196137 done
Copying blob 8f26704f753c done
Copying blob 83310c7c677c done
Copying blob 654b3bf1361e [==================>-------------------] 82.0MiB /

162.7MiB
Copying blob e39c3abf0df9 [================>---------------------] 100.0MiB /

222.8MiB

NOTE Before executing the podman push command, I logged into the quay.io/
rhatdan account using podman login, which is covered in the next section.

After the push command is finished, the image becomes available for pull for other
users, given they have access to this container registry. Table 2.3 describes the sup-
ported transports for different types of container’s storage.

Table 2.3 Podman-supported transports

Transport Description

Container registry
(Docker)

Default transport. This references a container image stored in a remote con-
tainer image registry. Container registry is a place for storing and sharing con-
tainer images (e.g., docker.io or quay.io).

oci References a container image, compliant with the Open Container Image
Layout Specification. The manifest and layer tarballs as individual files are
located in the local directory.

dir References a container image, compliant with the Docker image layout. It is
very similar to the oci transport but stores the files using the legacy Docker
format. It is a nonstandardized format, primarily useful for debugging or non-
invasive container inspection.

docker-archive References a container image in Docker image layout, which is packed into a
TAR archive.

48 CHAPTER 2 Command line
You want to push your image to a container registry, but if you try to push it, the con-
tainer registry rejects your push, since you have not provided login authorization
information. You need to execute podman login to create the authorization.

2.2.5 podman login: Logging into a container registry

In the previous section, I pushed the image to my container registry by executing the
following:

$ podman push myimage quay.io/rhatdan/myimage

However, I left out a key step: logging into a container registry using correct creden-
tials. This is a necessary step for pushing a container image. It is also required for pull-
ing a container image from a private registry.

 To follow along in this section, you need to set up an account at a container regis-
try; there are several container registries available to choose from. The https://quay.io
and https://docker.io registries both provide free accounts and storage. Your com-
pany might have a private registry, where you can also get an account.

 For the examples, I will continue to use my rhatdan account at quay.io. Log in to
get your credentials:

$ podman login quay.io
Username: rhatdan
Password:
Login Succeeded!

Notice the Podman command prompts you for your username and password at the
registry. The podman login command has options to pass the username/password
information on the command line to avoid the prompt, allowing you to automate
the login process.

 To store authentication information for the user, the podman login command cre-
ates an auth.json file. By default, this is stored in the /run/user/$UID/containers/
auth.json file:

oci-archive References an image compliant with the Open Container Image Layout Speci-
fication, which is packed into a TAR archive. It is very similar to the docker-
archive transport, but it stores an image in OCI format.

docker-daemon References an image stored in the Docker daemon’s internal storage. Since
the Docker daemon requires root privileges, Podman has to be run by the
root user.

container-storage References an image located in a local container storage. It is not a transport
but more of a mechanism for storing images. It can be used to convert other
transports into container-storage. Podman defaults to using
container-storage for local images.

Table 2.3 Podman-supported transports (continued)

Transport Description

https://quay.io
https://docker.io

492.2 Working with container images
cat /run/user/3267/containers/auth.json
{
 "auths": {
 "quay.io": {
 "auth": "OBSCURED-BASE64-PASSWORD"
 }
 }
}

The auth.json file contains your registry password in a Base64-encoded string; there is
no cryptography involved. Therefore, the auth.json file needs to be protected. Podman
defaults to storing the file in /run because it is a temporary filesystem and is destroyed
when you log out or the system is rebooted. The /run/user/$UID/containers directory
is not accessible by other users on the system.

 It is possible to override the location by specifying the --auth-file option. Alter-
natively, you can use the REGISTRY_AUTH_FILE environment variable to modify its loca-
tion. If both are specified, the --auth-file option is used. All container tools use this
file to access the container registry.

 It is possible to run the podman login command multiple times to log in to multi-
ple registries, storing the login information in the same authorization file with a dif-
ferent stanza.

NOTE Podman supports other mechanisms for storing the password informa-
tion. These are called credential helpers.

After you are done using the registry, you can log out by executing podman logout.
This command deletes the cached credentials stored in the auth.json file:

$ podman logout quay.io
Removed login credentials for quay.io

Some notable podman login and logout options include the following:

 --username, (-u—This provides the Podman username to use when logging into
the registry.

 --authfile—This tells Podman to store the authorization file in a different loca-
tion. You can also use the REGISTRY_AUTH_FILE environment variable to change
the location.

 --all—This allows you to log out of all of the registries.

Use the man podman-login and man podman-logout commands for information about
all options.

 Notice when you pushed the image to a container registry, you renamed myimage
to quay.io/rhatdan/myimage:

$ podman push myimage quay.io/rhatdan/myimage

50 CHAPTER 2 Command line
It’d be nice to just have the local image named quay.io/rhatdan/myimage, in which
case you could have just executed

$ podman push quay.io/rhatdan/myimage

In the next section, you will learn how to add names to images.

2.2.6 Tagging images

Earlier in this chapter, I pointed out that locally created images are created with a
localhost registry. Images get created with the localhost registry when you commit a con-
tainer to an image or if you use podman build to build an image. Podman has a mech-
anism to add additional names to images; it calls these names tags, and the command
is podman tag.

 Using the podman images command, list the image(s) in container/storage:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 \hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

You will want the final image you plan on shipping to be referred to as quay.io/rhatdan/
myimage. To achieve this, add that name with the following podman tag command:

$ podman tag myimage quay.io/rhatdan/myimage

Now run podman images again to examine the images. You will see that the name is
now quay.io/rhatdan/myimage. Notice that the localhost/myimage and quay.io/
rhatdan/myimage have the same image ID of 2c7e43d88038:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Since the images have the same image ID, they are the same image with multiple
names. Now you can interact directly with quay.io/rhatdan/myimage. First, you need
to log back in to quay.io:

512.2 Working with container images
$ podman login --username rhatdan quay.io
Password:
Login Succeeded!

Now push without requiring the destination name:

$ podman push quay.io/rhatdan/myimage
Getting image source signatures
…
Storing signatures

That was much simpler.
 Let’s tag the previously used image with a version, 1.0:

$ podman tag quay.io/rhatdan/myimage quay.io/rhatdan/myimage:1.0

Once again, examine the images; notice that myimage now has three different
names/tags. All three have the same image ID of 2c7e43d88038:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage latest 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Now you can push the 1.0 version of the myimage (application) to the registry:

$ podman push quay.io/rhatdan/myimage:1.0
Getting image source signatures
Copying blob 8f26704f753c skipped: already exists
Copying blob e39c3abf0df9 skipped: already exists
Copying blob 654b3bf1361e skipped: already exists
Copying blob 83310c7c677c skipped: already exists
Copying blob 164d51196137 [--------------------------------------] 0.0b / 0.0b
Copying config 2c7e43d880 [--------------------------------------] 0.0b / 4.0KiB
Writing manifest to image destination
Storing signatures

Users can pull either the latest image or the 1.0 version. Later, when you build version
2.0 of your application, you can store both images at the registry. You can run both
version 1.0 and 2.0 of your application on the host at the same time.

 Use a web browser (e.g., Firefox, Chrome, Safari, Internet Explorer, or Microsoft
Edge) to look at the images at quay.io. You can see 1.0 and the latest image in figure 2.4:

$ web-browser quay.io/repository/rhatdan/myimage?tab=tags

52 CHAPTER 2 Command line
Now that you have pushed your image to a container registry, you may want to free up
storage from your home directory by removing the images.

NOTE Contrary to common sense, the tag latest does not refer to the most
up-to-date image in the repository. It is just another tag with no magic involved.
Even worse, because it is being used as a default tag for images pushed with-
out tags, it could refer to any random version of an image. There could be
newer images in the container registry than your local container’s storage

Figure 2.4 List of myimage tags on quay.io (https://quay.io/repository/rhatdan/myimage/?tab=tags)

https://quay.io/repository/rhatdan/myimage/?tab=tags

532.2 Working with container images
with this tag. Thus, it is always better to refer to the specific version of the
image you want to use, rather than relying on the latest.

2.2.7 Removing images

Over time, images can take up a lot of disk space. Thus, it will be a good idea to
remove images you no longer use. Let’s list local images first:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Use the podman rmi command to remove local images:

$ podman rmi localhost/myimage
Untagged: localhost/myimage:latest

Listing the local images again, you will see that the command didn’t actually remove
the image but only the localhost tag from the image. Podman still has two references
to the same image ID: the actual content of the image has not been removed. None of
the disk space was freed up:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage 1.0 2c7e43d88038 46 hours ago 462 MB
quay.io/rhatdan/myimage latest 2c7e43d88038 46 hours ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

You can remove the other tags using a short name (see section 2.2.8). Podman uses
the short name and finds the first name in local storage that matches the short name
without a registry and removes it, which is why I need to remove it twice to get rid of
both images. Tags other than latest need to be specified explicitly:

$ podman rmi myimage
Untagged: quay.io/rhatdan/myimage:latest
$ podman rmi myimage:1.0
Untagged: quay.io/rhatdan/myimage:1.0
Deleted: 2c7e43d88038669e8cdbdff324a9f9605d99697215a0d21c360fe8dfa8471bab

54 CHAPTER 2 Command line
It is only when the last tag is removed that the actual disk space is reclaimed:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB
registry.access.redhat

➥.com/ubi8 latest ad42391b9b46 5 weeks ago 234 MB

Alternatively, you can try removing the images by specifying the image ID:

$ podman rmi 14119a10abf4
Error: unable to delete image\

➥ "2c7e43d88038669e8cdbdff324a9f9605d99697215a0d21c360fe8dfa8471bab" by\

➥ ID with more than one tag ([quay.io/rhatdan/myimage:1.0\

➥ quay.io/rhatdan/myimage:latest]): please force removal

But that fails because there are multiple tags for the same image. Adding the --force
option removes the image and all of its tags:

$ podman rmi 14119a10abf4 --force
Untagged: quay.io/rhatdan/myimage:1.0
Untagged: quay.io/rhatdan/myimage:latest
Deleted: 2c7e43d88038669e8cdbdff324a9f9605d99697215a0d21c360fe8dfa8471bab

As your image sizes and numbers grow and more containers are created, it becomes
harder to figure out which images are no longer needed. Podman has another useful
command—podman image prune—for removing all dangling images. Dangling images
are images that no longer have a tag associated with them or a container using them.
The prune command also has the --all option, which removes all images that are
currently not in use by any containers, including dangling images:

$ podman image prune -a
WARNING! This command removes all images without at least one container \

➥ associated with them.
Are you sure you want to continue? [y/N] y
6d633c2626113fb4e5aa75babb2af39268948497893f7bb5b4c2043d7a986ba0
B9097177b416944cabdcfcab0e74a319223ad1acaed38ac57a262b2421732355

NOTE Having no containers running the podman image prune command
removes all of the local images. This frees up all of the disk space in the home
directory. You can use the podman system df command to show all of the stor-
age in your home directory used by Podman.

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE

Some notable podman image prune options include the following:

 --all—This tells Podman to remove all images, freeing up all storage. Images
that have containers running on them are not removed.

552.2 Working with container images
 --force—This tells Podman to stop and remove any containers that are run-
ning on them and remove any images dependent on the image you are attempt-
ing to remove.

Use the man podman-image-prune command for information about all options.
 Images pushed to the registry could also be pulled for various reasons, including

but not limited to sharing your applications with others, testing other versions, getting
back removed local versions, and working on a new version of an image.

2.2.8 Pulling images

Although you previously removed all local images, you can pull the previously pushed
image at quay.io/rhatdan/myimage. Podman has the podman pull command to pull
images from container registries (transports) into local container storage:

$ podman pull quay.io/rhatdan/myimage
Trying to pull quay.io/rhatdan/myimage:latest…
Getting image source signatures
Copying blob dfd8c625d022 done
Copying blob e21480a19686 done
Copying blob 68e8857e6dcb done
Copying blob 3f412c5136dd done
Copying blob fbfcc23454c6 done
Copying config 2c7e43d880 done
Writing manifest to image destination
Storing signatures
2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae

Does the output look familiar? You probably remember similar output from the pod-
man run command from section 2.1.2:

$ podman run -d -p 8080:8080 --name myapp\

➥ registry.access.redhat.com/ubi8/httpd-24
Trying to pull registry.access.redhat.com/ubi8/httpd-24:latest…
Getting image source signatures
Checking if image destination supports signatures
Copying blob 296e14ee2414 skipped: already exists
Copying blob 356f18f3a935 skipped: already exists
Copying blob 359fed170a21 done
Copying blob 226cafc3a0c6 done
Writing manifest to image destination
Storing signatures
37a1d2e31dbf4fa311a5ca6453f53106eaae2d8b9b9da264015cc3f8864fac22

Many Podman commands implicitly execute the podman pull command if the
required image is not present locally.

 So executing podman images shows the image back in container storage, ready to
be used for containers:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage latest 2c7e43d88038 2 days ago 462 MB

56 CHAPTER 2 Command line
Up until now, you have been typing the image with the full names as registry.access
.redhat.com/ubi8/httpd-24 or quay.io/rhatdan/myimage, but if you are like me and
not a great typist, this can be a pain. You really need a way to refer to the images via
short names.

SHORT NAMES AND CONTAINER REGISTRIES

When Docker first hit the scene, they defined an image reference as a combination of
the container registry where the image was stored, repository, image name, and a tag
or version of the image. In our examples, we have been using quay.io/rhatdan/myimage.
In table 2.4, you can see this image name breakdown; note that the latest tag was
used implicitly, as the image version wasn’t specified.

The Docker command line has internally set the docker.io registry as the only registry,
thus making every short image name refer to images at docker.io. There is also a spe-
cial repository library, which is used for certified images.

 So rather than typing

docker pull docker.io/library/alpine:latest

You can just execute

docker pull alpine

Conversely, if you want to pull an image from a different registry, you need to specify
the full name of the image:

docker pull registry.access.redhat.com/ubi8/httpd-24:latest

Table 2.5 shows the difference between the image name used in a short name versus
the fully specified image name. Notice that when using the short name, the registry,
repository, and tag were not specified.

Since I am lazy and hate to type extra characters, I almost always use short names.
With Podman, the developers did not want to hardcode one registry, docker.io, into

Table 2.4 Container image name table

Registry Repository Name Tag

quay.io rhatdan myimage latest

Table 2.5 Short name to container image name table

Registry Repository Name Tag

alpine

docker.io library alpine latest

572.2 Working with container images
the tool. Podman allows distributions, companies, and you to control which registries
to use and to be able to configure multiple registries. At the same time, Podman pro-
vides support for the easier-to-use short names.

 Podman usually comes with multiple registries defined, controlled by the distribu-
tion that packaged Podman. You can use the podman info command to see what regis-
tries are defined for your Podman installation:

$ podman info
…
registries:
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - docker.io
 - quay.io

The list of registries can be modified in the registries.conf file, which is described in
section 5.2.1.

 Let’s discuss the security side of things using these commands:

$ podman pull rhatdan/myimage
$ podman pull quay.io/rhatdan/myimage

From a security perspective, it is always better to specify the full image name when
pulling it from a registry. That way, Podman guarantees that it pulls from the specified
registry. Imagine you are attempting to pull rhatdan/myimage. Using the previous
search order, there is a chance someone could set up an account on docker.io/rhatdan
and trick you into mistakenly pulling docker.io/rhatdan/myimage.

 To help protect against this, on the first pull of an image, Podman prompts you to
select an exact image from the list of found images in configured registries:

$ podman create -p 8080:8080 ubi8/httpd-24
? Please select an image:
 registry.fedoraproject.org/ubi8/httpd-24:latest
 ▸ registry.access.redhat.com/ubi8/httpd-24:latest
 docker.io/ubi8/httpd-24:latest
 quay.io/ubi8/httpd-24:latest

Once you have selected and pulled an image successfully, Podman records the short
name mapping. In the future, when you run a container with this short name, Pod-
man uses the short name mapping to pick the correct registry and does not prompt.

 Linux distributions also ship mappings of the most commonly used short names,
as they want you to pull from their supported registries. You can find these short name
configuration files in the /etc/containers/registries.conf.d directory on the Linux
host. Companies can also drop short name alias files in this directory:

$ cat /etc/containers/registries.conf.d/000-shortnames.conf
[aliases]

58 CHAPTER 2 Command line
 # centos
 "centos" = "quay.io/centos/centos"
 # containers
 "skopeo" = "quay.io/skopeo/stable"
 "buildah" = "quay.io/buildah/stable"
 "podman" = "quay.io/podman/stable"
…

Some notable podman pull options include the following:

 --arch—This tells Podman to pull an image for a different architecture. For
example, on my x86_64 machine, I can pull an arm64 image. By default, podman
pull pulls images for the native architecture.

 --quiet (-q)—This tells Podman not to print out all the progress information.
It just prints the image ID when it completes.

Use the man podman-pull command for information about all options.
 I have mentioned a few images in this book, but there are thousands and thou-

sands of images available. You need a mechanism to be able to search through these
images for the perfect match.

2.2.9 Searching for images

You might not know the name of a particular image you want to run or use as a base
for your own image. Podman provides the command podman search, which allows you
to search container registries for matching names:

$ podman search registry.access.redhat.com/httpd
INDEX NAME

➥ DESCRIPTION redhat.com

➥ registry.access.redhat.com/rhscl/httpd-24-rhel7

➥ Apache HTTP 2.4\ Server
redhat.com registry.access.redhat.com/ubi8/httpd-24\

➥ Platform for running Apache httpd 2.4 or bui...
redhat.com registry.access.redhat.com/rhscl/varnish-6-rhel7 Varnish\

➥ available as container is a base pla...
…

In this example, we are searching for images that include the string httpd in their
name on the repository registry.access.redhat.com.

 Some notable podman search options include the following:

 --no-trunc—This tells Podman to show the full description of the image.
 --format—This allows you to customize which fields are displayed by Podman.

Use the man podman-search command for information about all options.
 Up until now, you have seen several ways of managing and manipulating container

images, including inspecting, pushing, pulling, and searching for them. But you have
only been able to look at the contents of an image by running it as a container. One
way to simplify the process is mounting a container image.

592.2 Working with container images
2.2.10 Mounting images

Often you might want to examine the contents of a container image, and one way to
do this is launching a shell inside a running container from the image. The problem
with this is that the tools you use to examine the container image might not be avail-
able within the container. There is also a security risk that the application in the con-
tainer is malicious, making use of this container undesirable.

 To help with these problems, Podman provides the podman image mount command
to mount an image’s root filesystem in a read-only mode without creating a container
from it. The mounted image becomes immediately available on the host system, allow-
ing you to examine its contents.

 Now try mounting the image you pulled previously:

$ podman mount quay.io/rhatdan/myimage
Error: cannot run command "podman mount" in rootless mode, must execute

`podman unshare` first

The reason for this error is that rootless mode does not allow mounting images. You
need to enter a user namespace and separate mount namespace. Chapter 5 explains
how most rootless Podman commands enter the user namespace and mount name-
space when they execute. For now, it is enough to know that the podman unshare com-
mand enters the user and mount namespaces and will shut down when you execute
the exit command of your shell.

NOTE The name unshare comes from the Linux syscall unshare (man 2
unshare). Linux also includes an unshare tool (man 1 unshare), which allows
you to create namespaces by hand. Another low-level tool called nsenter, or
namespace enter (man 1 nsenter), allows you to join processes to different
namespaces. Podman unshare uses the same kernel features. It simplifies the
process of creating and configuring namespaces and inserting processes into
the namespaces.

The podman unshare command leaves you at a # prompt, where you can actually
mount an image:

$ podman unshare
#

Mount the image, and save the location of the mounted filesystem in an environment
variable:

mnt=$(podman image mount quay.io/rhatdan/myimage)

Now you can actually examine the content of the image. Let’s print the contents of a
file on the terminal:

cat $mnt/var/www/html/index.html
<html>

60 CHAPTER 2 Command line
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>

When you are done, unmount the image, and exit the unshare session:

podman image unmount quay.io/rhatdan/myimage
exit

NOTE You have examined about a half of the podman image subcommands,
arguably the most used ones. Refer to the Podman man pages for a full expla-
nation of these and other subcommands of the podman image command:
$ man podman-image.

Now that you have a better understanding of containers and images, the next import-
ant step is updating your image. The main reasons for this are the need to update
your application and the availability of new versions for the base image you use. You
can build scripts to manually run the commands to build the image, but luckily, Pod-
man optimized the experience.

2.3 Building images
So far you have been working with images, which were already created and uploaded
to a container registry. The process of creating a container image is called building.

 When building container images, you manage not only your application but also
the image content used by this application. In the days prior to containers, you
shipped applications as an RPM or DEB package, and then it was up to the distribu-
tion to make sure the other parts of the OS were kept up to date and secure. But in
the container world, the container image includes the application along with a subset
of the OS. It is the developers’ responsibility to keep all of the image contents up to
date and secure.

 A coworker of mine, Scott McCarty (smccarty@redhat.com, @fatherlinux), has a
saying, “Container images don’t age like wine but more like cheese. As the image gets
older it gets stinky.”

 This means that if the developer doesn’t keep up with the security updates, the
number of vulnerabilities in the image will grow at an alarming rate. Luckily for devel-
opers, Podman has a special mechanism for helping you with image building for your
applications. The podman build command uses the Buildah tool (https://github
.com/containers/buildah) as a library to build container images; Buildah is covered
in appendix A.

 The podman build uses a special text document called Containerfile or Dockerfile
to automate the building of container images. This document lists commands used to
build a container image.

https://github.com/containers/buildah
https://github.com/containers/buildah
https://github.com/containers/buildah

612.3 Building images
NOTE The concept of a Dockerfile and its syntax was originally created for
the Docker tool, developed by Docker, Inc. Podman defaults to using Con-
tainerfile for the name, which uses the exact same syntax. Dockerfile is sup-
ported as well for legacy purposes. The Docker build command does not
support Containerfile by default but can use the Containerfile. You can spec-
ify the -f option: # docker build -f Containerfile.

2.3.1 Format of a Containerfile or Dockerfile

Containerfiles take many directives. I break these down into two categories, adding con-
tent to the container image and describing and documenting how to use the image.

ADDING CONTENT TO AN IMAGE

Recall back in section 1.1.2 that I described a container image as a tdirectory on disk
that looks like root on a Linux system. This directory is called a rootfs. Several of the
directives in a container job are adding content to this rootfs. This rootfs eventually
contains all of the content used to create your container image.

 Every Containerfile must include a FROM line. The FROM line specifies the image
that the new image is based off, often called a base image. The podman build com-
mand supports a special image named scratch, which means to start your image
with no content. When Podman sees the FROM scratch directive, it just allocates
space in containers/storage for an empty rootfs, then COPY can be used to populate
the rootfs. More often, the FROM directive uses an existing image. For example, FROM
registry.access.redhat.com/ubi8 causes Podman to pull the ubi8 image from
the registry.access.redhat.com container registry and copy it to container storage.
podman build pulls the same image as the podman pull command you learned about
in section 2.2.8. When the image is pulled, Podman uses container storage to mount
the image on the rootfs directory, using a copy on the write filesystem, like OverlayFS,
where the other directives can start to add content. This image becomes the base
layer of the rootfs.

 The COPY directive is often used to copy files, directories, or tarballs off of the local
host into the newly created rootfs. The RUN directive is one of the most commonly
used Containerfile directives. RUN tells Podman to actually run a container on the
image. Package management tools, like DNF/YUM and apt-get, are run to install
packages from distributions onto your new image. The RUN directive runs any com-
mand within the container image as a container. The podman build command runs
the commands with the same security constraints as the podman run command.

 As an example, imagine you want to add the ps command to a container image;
you can create a directive like the following. The RUN command executes a container,
which updates all of the packages from the base image, and then installs the procps-ns
package, which includes the ps command. Finally the containerized command exe-
cutes yum to clean up after itself, so cruft is removed from the container image:

RUN yum -y update; yum -y install procps-ng; yum -y clean all

62 CHAPTER 2 Command line
Adding content to the container image is only half of what you need to do when creat-
ing a container image. You also need to describe and document how the image will be
used when other users download and run your image.

DOCUMENTING HOW TO USE THE IMAGE

Recall that back in section 1.1.2, I also described the JSON file that included the
image specification. This specification describes how the container image is to be run,
the command, which user to run it with, and other requirements of the image. The
Containerfile also supports many directives, which tells Podman how to run contain-
ers. These include the following:

 The ENTRYPOINT and CMD directives—These instrument the image with the
default command to be executed when users execute the image with Podman
run. CMD is the actual command to run. ENTRYPOINT can cause the entire image
to execute as a single command.

 The ENV directive—This sets up the default environment variables to run when
Podman runs a container on the image.

 The EXPOSE directive—This records the network ports for Podman to expose in
containers based on the image. If you execute podman run --publish-all …,
Podman looks inside of the image for the EXPOSE network ports and connects
them to the host.

Table 2.6 explains the directives used in a Containerfile to add content to a container
image.

Table 2.7 explains the directives used in a Containerfile to populate the OCI Runtime
Specifications with information that tells container engines like Podman information

Table 2.6 Containerfile directives that update the image

Directive examples Explanation

FROM
quay.io/rhatdan/myimage

Sets the base image for subsequent instructions. Containerfiles must
have FROM as their first instruction. The FROM may appear multiple
times within a single Containerfile to create multiple build stages.

ADD start.sh
/usr/bin/start.sh

Copies new files, directories, or remote file URLs to the filesystem of
the container at a specified path.

COPY start.sh
/usr/bin/start.sh

Copies files to the filesystem of the container at a specified path.

RUN dnf -y update Executes commands in a new layer on top of the current image and
commits the results. The committed image is used for the next step
in the Containerfile.

VOLUME /var/lib/mydata Creates a mount point with the specified name and marks it as hold-
ing externally mounted volumes from the native host or from other
containers. For more on volumes, see chapter 3.

632.3 Building images
about the image and how to run the image. You can find much more information on
Containerfiles in the containerfile(5) man page.

COMMITTING THE IMAGE

When podman build finishes processing the Containerfile, it commits the image,
using the same code as podman commit you learned about in section 2.1.9. Basically,
Podman TARs up all of the differences between the new content in the rootfs and
the base image, pulled down by the FROM directive. Podman also commits the JSON
file and saves this as an image in container storage. Now you can take the steps used
to build out containerized applications and automate them using a Containerfile and
Podman build.

Table 2.7 Containerfile directives that define the OCI Runtime Specification

Directive examples Explanation

CMD /usr/bin/start.sh Specifies the default command to run when launching a container off
this image. If CMD is not specified, the parent image’s CMD is inher-
ited. Note that RUN and CMD are very different. RUN runs the com-
mands during the build process, while CMD is only used when a user
launches the image without specifying a command.

ENTRYPOINT “/bin/sh -c” Allows you to configure a container to run as an executable. The
ENTRYPOINT instruction is not overwritten when arguments are
passed to podman run. This allows arguments to be passed to the
entrypoint—for instance, podman run <image> -d passes the -d
argument to the ENTRYPOINT.

ENV foo=”bar” Adds an environment variable to be used during both the image build
and container execution.

EXPOSE 8080 Announces the port that containerized applications will be exposing.
This does not actually map or open any ports.

LABEL Description=”Web
browser which displays
Hello World”

Adds metadata to an image.

MAINTAINER Daniel
Walsh

Sets the Author field for the generated images.

STOPSIGNAL SIGTERM Sets the default stop signal sent to the container to exit. The signal
can be a valid unsigned number or a signal name in the format
SIGNAME.

USER apache Sets the user name (or UID) and group name (or GID) to use for any
RUN, CMD, and ENTRYPOINT specified after it.

ONBUILD Adds a trigger instruction to the image to be executed at a later time,
when the image is used as the base for another build.

WORKDIR /var/www/html Sets the working directory for RUN, CMD, ENTRYPOINT, and COPY
directives. A directory will be created if it doesn’t exist.

64 CHAPTER 2 Command line
TIP Use the --tag option to name the new image you are creating with podman
build. This tells Podman to add the specified tag or name to the image in con-
tainer storage in the same way as the podman tag command.

2.3.2 Automating the building of our application

First, create a directory to put your Containerfile and any other content for the con-
tainer image in. The directory is called a context directory:

mkdir myapp

Next, create the index.html file you plan to use in the containerized application in the
myapp directory:

$ cat > myapp/index.html << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
_EOF

Next, create a simple Containerfile to build your application in the myapp directory.
The first line of the Containerfile is the FROM directive to pull the ubi8/httpd-24 image
you are treating as your base image. Then add a COPY command to copy the index.html
file into the image. The COPY directive tells Podman to copy the index.html file out of
the context directory (./myapp) and copy it to the /var/www/html/index.html file
within the image:

$ cat > myapp/Containerfile << _EOF
FROM ubi8/httpd-24
COPY index.html /var/www/html/index.html
_EOF

Finally, use podman build to build your containerized application. Specify the --tag (-t)
to name the image quay.io/rhatdan/myimage. You also need to specify the context
directory ./myapp:

$ podman build -t quay.io/rhatdan/myimage ./myapp
STEP 1/2: FROM ubi8/httpd-24
STEP 2/2: COPY index.html /var/www/html/index.html
COMMIT quay.io/rhatdan/myimage
--> f81b8ace4f1
Successfully tagged quay.io/rhatdan/myimage:latest
F81b8ace4f134d08cedb20a9156ae727444ae4d4ec1ceb3b12d3aff23d18128b

When the podman build command completes, it commits the image and tags (-t) it
with the quay.io/rhatdan/myimage name. It is now ready to be pushed to the con-
tainer registry using the podman push command.

652.3 Building images
 Now you can set up a CI/CD system or even a simple cron job to regularly build
and replace myapplication:

$ cat > myapp/automate.sh << _EOF
#!/bin/bash
podman build -t quay.io/rhatdan/myimage ./myapp
podman push quay.io/rhatdan/myimage
_EOF
$ chmod +x myapp/automate.sh

Add some test scripts as well to make sure your application works the way it was
designed before replacing the previous version. Let’s take a look at the images that
were built:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage latest f81b8ace4f13 2 minutes ago 462 MB
<none> <none> 2c7e43d88038 2 days ago 462 MB
registry.access.redhat

➥.com/ubi8/httpd-24 latest 8594be0a0b57 5 weeks ago 462 MB

Notice the old version of quay.io/rhatdan/myimage, image ID 2c7e43d88038, still
exists in container storage but now has a REPOSITORY and TAG of <none> <none>.
Images like these are called dangling images. Since I have created a new version of
quay.io/rhatdan/myimage with the podman build command, the previous image loses
that name. You can still use the Podman commands with the image ID, or if the new
image doesn’t work, simply use podman tag to rename the old image back to quay.io/
rhatdan/myimage. If the new image works correctly, you can remove the old image with
podman rmi. These <none><none> images tend to build up over time, wasting space, but
you can periodically use the podman image prune command to remove them.

 The podman build could really use a chapter or even a book to itself. People build
images in thousands of different ways using the commands briefly described here.

 --tag is a notable podman build option that specifies the image tag or name for
the image. Remember that you can always add additional names after you create the
image with the podman tag command you used in section 2.2.6. Use the man podman-
build command for information about all options (see table 2.8).

Table 2.8 Podman image commands

Command Man page Description

build podman-image-build(1) Builds an image using instructions from Containerfiles

diff podman-image-diff(1) Inspects changes in image’s filesystem

exists podman-image-exists(1) Checks whether an image exists

history podman-image-history(1) Shows a history of a specified image

66 CHAPTER 2 Command line
Summary
 Podman’s simple command-line interface makes working with containers easy.
 Podman run, stop, start, ps, inspect, rm, and commit are all commands for

working with containers.
 Podman pull, push, login, and rmi are tools for working with images and shar-

ing them via container registries.
 Podman build is a great command for automating the build of container

images.
 Podman’s command line is based on the Docker CLI and supports it exactly,

allowing us to tell people to just alias Docker = Podman.
 Podman has additional commands and options to support more advanced con-

cepts like podman image mount.

import podman-image-import(1) Imports a tarball to create a filesystem image

inspect podman-image-inspect(1) Displays the configuration of an image

list podman-image-list(1) Lists all of the images

load podman-image-load(1) Loads image(s) from a tarball

mount podman-image-mount(1) Mounts an image’s root filesystem

prune podman-image-prune(1) Removes unused images

pull podman-image-pull(1) Pulls an image from a registry

push podman-image-push(1) Pushes an image to a registry

rm podman-image-rm(1) Removes an image

save podman-image-save(1) Saves image(s) to an archive

scp podman-image-scp(1) Securely copies images to other containers/storage

search podman-image-search(1) Searches the registry for an image

sign podman-image-sign(1) Signs an image

tag podman-image-tag(1) Adds an additional name to a local image

tree podman-image-tree(1) Prints the layer hierarchy of an image in a tree format

trust podman-image-trust(1) Manages container image trust policy

unmount podman-image-unmount(1) Unmounts an image’s root filesystem

untag podman-image-untag(1) Removes a name from a local image

Table 2.8 Podman image commands (continued)

Command Man page Description

Volumes
Up until now, the containers you have been working with include all their content
within the container image. As I described in chapter 1, the only thing required to
be shared with traditional containers is the Linux kernel. There are several reasons
you need to isolate application data from the application, including the following:

 Avoiding embedding actual data for applications such as databases.
 Using the same container image to run multiple environments.
 Reducing overhead and improving storage read/write performance, since

volumes write directly to the filesystem, while containers use the overlay or

This chapter covers
 Using volumes to isolate data from the

containerized application

 Sharing content from your host into containers
via volumes

 Using volumes with the user namespace and
SELinux

 Embedding volumes into container images

 Exploring different types of volumes and the
volume commands
67

68 CHAPTER 3 Volumes
fuse-overlayfs filesystem to mount their layers. Overlay is a layered filesystem,
meaning the kernel needs to copy the previous layer entirely to create a new
layer, and fuse-overlayfs switches each read and write from kernel space to user
space and back. All of this creates quite an overhead.

 Sharing content available via network storage.

NOTE bind mounts remount parts of the file hierarchy in a different location
on the filesystem. The files and directories in the bind mount are the same as
the original (see the mount command man page for an explanation of bind
mounts). A bind mount allows the same content to be accessible in two places,
without any additional overhead. It is important to understand that bind does
not copy the data or create new data.

Supporting volumes also adds complexity, especially concerning security. A lot of the
security features of containers prevent the container processes from gaining access to
the filesystem outside the container image. In this chapter, you will discover the ways
Podman allows you to work around these obstacles.

3.1 Using volumes with containers
Let’s go back to your containerized application. Up until now, you have simply embed-
ded the web application data into your container filesystem directly. Recall that in sec-
tion 2.1.8, you used the podman exec command to modify the Hello World index.html
data within the container:

$ podman exec -i myapp bash -c 'cat > /var/www/html/index.html' << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>
_EOF

You have made the containerized image more flexible by allowing users to supply
their own content for the web service or perhaps to update the web service on the fly.
At the same time, while this method is possible, it is error prone and not scalable; it is
where volumes come in handy.

 Podman allows you to mount host filesystem content into containers using the
podman run command via the --volume (-v) option.

 The --volume HOST-DIR:CONTAINER-DIR option tells Podman to bind mount
HOST-DIR in the host to CONTAINER-DIR in the container. Podman supports other
kinds of volumes as well, but in this section, I will focus on bind mount volumes.

 It is possible to mount both files or directories in a single option. Changes of the
content on the host will be seen inside the container. Similarly, if container processes
change the content inside the container, the changes will be seen on the host.

693.1 Using volumes with containers
 Let’s look at an example. Create a directory, html, in your home directory, and
then create a new html/index.html file in it:

$ mkdir html
$ cat > html/index.html << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Goodbye World</h1>
 </body>
</html>
_EOF

Now launch a container with the option -v ./html:/var/www/html:

$ podman run -d -v ./html:/var/www/html:ro,z -p 8080:8080
quay.io/rhatdan/myimage

94c21a3d8fda740857abc571469aaaa181f4db27a464ceb6743c4a37fb875772

Notice the extra :ro,z fields in the --volume option. The ro option tells Podman to
mount the volume in read-only mode. The read-only mount means processes within
the container cannot modify any content under /var/www/html, while processes on
the host are still able to modify the content. Podman defaults all volume mounts to
read/write mode. The z option tells Podman to relabel the content to a shared label
for use by SELinux (see section 3.1.2).

 Now that you have launched the container, open a web browser, and navigate to
localhost:8080 to make sure the changes have taken place (see figure 3.1).

$ web-browser localhost:8080

Now you can shut down and remove the container you just created. Removing the
container does not affect the content at all. The following command removes the lat-
est (--latest) container, yours. The --force option tells Podman to stop the con-
tainer and then remove it:

$ podman rm --latest --force

Figure 3.1 Web browser window connecting to the myimage Podman container
with volume mounted L

70 CHAPTER 3 Volumes
Finally, remove the content with this command:

$ rm -rf html

NOTE The --latest option is not available on Mac and Windows. You must
specify the container name or ID. Remote mode is explained in chapter 9,
and Podman on Mac and Windows is explained in appendixes E and F.

3.1.1 Named volumes

In the first volume example, you created a directory on disk and then mounted it into
the container. Similarly, you can take any existing file or directory and mount it into a
container, as long as you have read access to it.

 Another mechanism for persisting Podman containers data is named volume. You
can create one of these with the podman volume create command. In the following
example you will create a volume named webdata:

$ podman volume create webdata
webdata

Podman defaults to creating local-named volumes, with storage allocated in the con-
tainer storage directories. You can inspect the volume and look for its mount point
using the following command:

$ podman volume inspect webdata
[
 {
 "Name": "webdata",
 "Driver": "local",
 "Mountpoint":

➥ "/home/dwalsh/.local/share/containers/storage/volumes/webdata/_data",
 "CreatedAt": "2021-10-11T14:10:48.741367132-04:00",
 "Labels": {},
 "Scope": "local",
 "Options": {}
 }
]

Podman actually creates a directory in your local container storage, /home/dwalsh/
.local/share/containers/storage/volumes/webdata/_data, to store the content of the
volume. You can create content from the host in this directory:

$ cat > /home/dwalsh/.local/share/containers/storage/volumes/web-
data/_data/index.html << _EOL

<html>
 <head>
 </head>
 <body>
 <h1>Goodbye World</h1>
 </body>
</html>
_EOL

713.1 Using volumes with containers
Now you can run the myimage application using this volume:

$ podman run -d -v webdata:/var/www/html:ro,z -p 8080:8080
quay.io/rhatdan/myimage

0c8eb612831f8fe22438d73d801e5bb664ec3b1d524c5c10759ee0049061cb6b

Now refresh the web browser to ensure the file created in the host directory is display-
ing “Goodbye World” (see figure 3.2).

Named volumes can be used for more than one container at a time, and they will
stay around even after the container is removed. If you are done with the named vol-
ume and container, you can first stop the container without waiting for the pro-
cesses to finish:

$ podman stop -t 0 0c8eb61283

Then remove the volume with the podman volume rm command. Note the --force
option, which tells Podman to remove the volume and all containers that rely on the
volume:

$ podman volume rm --force webdata

Now you can make sure the volume is gone by executing the volume list command:

$ podman volume list

If a named volume doesn't exist prior to executing the podman run command, it will be
created automatically. In the following example, you will specify webdata1 for the name
of the named volume, then list the volumes:

$ podman run -d -v webdata1:/var/www/html:ro,z -p 8080:8080\

➥ quay.io/rhatdan/myimage
58ccaf37958496322e34cd933cd4dd5a61ab06c5ba678beb28fdc29cfb81f407

$ podman volume list
DRIVER VOLUME NAME
local webdata1

Figure 3.2 Web browser window connecting to the myimage Podman container with
the named volume mounted

72 CHAPTER 3 Volumes
Of course, this volume is empty. Remove the webdata1 volume and container:

$ podman volume rm --force webdata1

Podman also supports other types of volumes. It uses the concept of volume plugins so
third parties can provide volumes; see the podman-volume-create man pages for
more information.

 Podman has other interesting volume features. The podman volume export com-
mand exports all the content of a volume into an external TAR archive. This archive
can be copied to other machines used to recreate the volume on another machine
with the podman volume import command. Now that you understand the handling of
volumes, it is time to dig deeper into volume options.

3.1.2 Volume mount options

You have been using volume mount options throughout this chapter. The ro option
tells Podman to mount the read-only volume, and the lowercase z option tells Pod-
man to relabel the content with SELinux labels that will allow multiple containers to
read and write in the volume:

$ podman run -d -v ./html:/var/www/html:ro,z -p 8080:8080
quay.io/rhatdan/myimage

Podman supports some other interesting volume options.

THE U VOLUME OPTION

Sometimes when you run a rootless container, you need a volume to be owned by the
user of the container. Imagine your application needs to allow the web server to write
to the volume. In your container, the Apache Web Server process (httpd) is run as the
apache (UID==60) user. The html directory in your home directory is owned by your
UID, meaning it is owned by root inside the container. The kernel does not allow a
process running as UID==60 inside the container to make changes to a directory
owned by root. You must set the ownership of the volume to UID==60.

 In rootless containers, the UIDs of the container are offset by the user namespace.
My user namespace mapping looks like this:

$ podman unshare cat /proc/self/uid_map
 0 3267 1
 1 100000 65536

The UID==0 inside the container is my UID 3267, and UID 1==100000, UID 2==10000 …
UID60==100059, meaning I need to set the ownership of the html directory to 100059.

 I can do this fairly simply, using the podman unshare command, as follows:

$ podman unshare chown 60:60 ./html

Now everything works. One problem with this is that I need to do some mental gym-
nastics to figure out which UID the container will run with.

733.1 Using volumes with containers
 Many container images exist with the default UID defined in them. The mariadb
image is another example of this; it runs with the mysql user, UID=999:

$ podman run docker.io/mariadb grep mysql /etc/passwd
mysql:x:999:999::/home/mysql:/bin/sh

If you created a volume to be used for the database, you need to figure out what
UID=999 mapped to within the user namespace. On my system this is UID=100998.

 Podman supplies the U command option for this exact situation. The U option tells
Podman to recursively change ownership (chown) the source volume to match the
default UID the container executes with.

 Try it out by first creating the directory for the database. Notice the directory in
the home directory is owned by your user:

$ mkdir mariadb
$ ls -ld mariadb/
drwxrwxr-x. 1 dwalsh dwalsh 0 Oct 23 06:55 mariadb/

Now run the mariadb container with the --user mysql, and bind mount the ./mari-
adb directory to /var/lib/mariadb with the :U option. Notice that the directory is now
owned by the mysql user:

$ podman run --user mysql -v ./mariadb:/var/lib/mariadb:U \

➥ docker.io/mariadb ls -ld /var/lib/mariadb
drwxrwxr-x. 1 mysql mysql 0 Oct 23 10:55 /var/lib/mariadb

If you look at the mariadb directory on the host again, you will see that it is now
owned by UID 100998 or whatever UID 999 maps to within your user namespace:

$ ls -ld mariadb/
drwxrwxr-x. 1 100998 100998 0 Oct 23 06:55 mariadb/

User namespace is not the only security mechanism you need to work around with
rootless containers. SELinux, while great for container security, can cause some prob-
lems when working with volumes.

THE SELINUX VOLUME OPTIONS

In my opinion, SELinux is the best mechanism for protecting the filesystem from hos-
tile container processes. Over the years, several container escapes have been thwarted
by SELinux (see section 10.8 for more information on SELinux).

 As I explained previously, volumes leak files from the OS into the container, and
from an SELinux point of view, these files and directories must be labeled correctly, or
the kernel will block access.

 The lowercase z command option you have been using in this chapter tells Pod-
man to recursively relabel all content in the source directory with a label that can be
read and written by all containers from an SELinux point of view. If the volume will
not be used by more than one container, relabeling with the lowercase z option isn’t
what you want. If a different hostile container escapes confinement, it might be able

74 CHAPTER 3 Volumes
to access this data and read/write it. Podman provides an uppercase Z option that tells
Podman to recursively relabel the content in such a way that only the processes within
the container can read/write the content.

 In both previous cases, you relabeled the content of the directory. Relabeling
works great if the directory is specified for use by containers. Sometimes you may want
to use a container to examine content in a system-specific directory—for example, if
you want to run a container that examines all the logs in /var/log or examines all
your home directories (/home/dwalsh).

NOTE Using this option on a home directory can have disastrous effects on
the system because it recursively relabels all content in the directory as if the
data was private to a container. Other confined domains would be prevented
from using the mislabeled data.

For these cases, you need to disable SELinux enforcement for container separation
to allow the containers to use the volume. Podman provides the command option
--security-opt label=disable to disable SELinux support for a single container,
basically running the container with an unconfined label from an SELinux perspective:

$ podman run --security-opt label=disable -v /home/dwalsh:/home/dwalsh -p\

➥ 8080:8080 quay.io/rhatdan/myimage

Table 3.1 lists and describes all of the mount options available in Podman.

Table 3.1 Volume mount options

Volume option Description

nodev Prevent container processes from using character or block devices on the volume.

noexec Prevent container processes from direct execution of any binaries on the volume.

nosuid Prevent SUID applications from changing their privilege on the volume.

O Mount the directory from the host as a temporary storage using the overlay filesys-
tem. Modifications to the mount point are destroyed when the container finishes
executing. This option is useful for sharing the package cache from the host into
the container to allow speeding up builds.

[r]shared|
[r]slave|
[r]private|
[r]unbindable

Specify mount propagation mode. Mount propagation controls how changes to
mounts are propagated across mount boundaries:

 private (default)—Any mounts done inside container will not be visible on host
and vice versa.

 shared—Mounts done under that volume inside container will be visible on
host and vice versa.

 slave—Mounts done on host under that volume will be visible inside container
but not the other way around.

 unbindable—An unbindable version of private mode.

The prefix r stands for recursive, meaning that any mounts underneath the mount
point will also be treated the same way.

753.1 Using volumes with containers
For more information, see the man pages for mount and mount_namespaces(7).
 Most of the time, the simple --volume option is powerful enough for mounting

volumes into containers. Over time, the requests for new mount options grew too
complex, so a new option called --mount was added.

3.1.3 podman run - -mount command option

The podman run --mount option is a much closer option to the underlying Linux mount
command. It allows you to specify all of the mount options that the mount command
understands; Podman passes them down directly to the kernel.

 The only mount types currently supported are bind, volume, image, tmpfs, and devpts.
(For more information, see the podman-mount(1) man page for more information.)

 Volumes and mounts are excellent ways to keep data separate from the container
image. In most cases, the container image should be treated as read-only, and any data
that needs to be written or is not specific to the application should be stored outside
of the container image via volumes. In a lot of cases, you will get much better perfor-
mance keeping your data separate, because reads and writes will not have the over-
head of the copy-on-write filesystem. These mounts also make it easier to use the same
container images with different data (table 3.2).

rw|ro Mount a volume in read-only (ro) or read-write (rw) mode. By default, read/write is
implied.

U Use the correct host UID and GID based on the UID and GID within the container.
Use with caution because this will modify the host filesystem.

z|Z Relabel file objects on the shared volumes. Choose the z option to label volume
content as shared among multiple containers. Choose the Z option to label content
as unshared and private.

Table 3.2 Podman volume commands

Command Man page Description

create podman-volume-create(1) Create a new volume.

exists podman-volume-exists(1) Check if a volume exists.

export podman-volume-export(1) Export the contents of a volume into a tar ball.

import podman-volume-import(1) Untar a tarball into a volume.

inspect podman-volume-inspect(1) Display detailed information on a volume.

list podman-volume-list(1) List all of the volumes.

prune podman-volume-prune(1) Remove all unused volumes.

rm podman-volume-rm(1) Remove one or more volumes.

Table 3.1 Volume mount options (continued)

Volume option Description

76 CHAPTER 3 Volumes
Summary
 Volumes are useful for separating the data used by a container from the appli-

cation inside an image.
 Volumes mount parts of the filesystem into a container's environment, which

means security concerns like SELinux and user namespace need to be modified
to allow access.

Pods
Podman is short for Pod Manager. A pod is a concept popularized by the Kubernetes
project; it is a group of one or more containers working together for a common
purpose and sharing the same namespaces and cgroups (resource constraints).
Additionally, Podman ensures that on SELinux machines, all container processes
within a pod share the same SELinux labels. This means they can all work together
from an SELinux point of view.

4.1 Running pods
Podman pods (see figure 4.1), just like Kubernetes Pods, always include a container
called the infra container—sometimes called the pause container (not to be con-
fused with the rootless pause container mentioned in section 5.2). The infra con-
tainer only holds open the namespaces and cgroups from the kernel, allowing
containers to come and go within the pod. When Podman adds a container to a
pod, it adds the container process to the cgroups and namespaces. Notice that the

This chapter covers
 An introduction to pods

 Managing multiple containers within a pod

 Using volumes with pods
77

78 CHAPTER 4 Pods
infra container has a container monitor process, conmon, monitoring it. Every con-
tainer within a pod has its own conmon.

 Conmon is a lightweight C program that monitors the container until it exits,
allowing the Podman executable to exit and reconnect to the container. Conmon
does the following when monitoring the container:

1 Conmon executes the OCI runtime, handing it the path to the OCI spec file as
well as pointing to the container layer mount point in containers/storage. The
mount point is called the rootfs.

2 Conmon monitors the container until it exits and reports its exit code back.
3 Conmon handles when the user attaches to the container, providing a socket to

stream the container’s STDOUT and STDERR.
4 The STDOUT and STDERR are also logged to a file for Podman logs.

NOTE The infra container (pause container; see figure 4.1) is similar to the
rootless pause container; its only purpose is to hold open the namespaces and
cgroups, while containers come and go. However, each pod will have a differ-
ent infra container.

Podman pods also support init containers, as seen in figure 4.2. These containers
run before the primary containers in the pods are executed. An example of an init
container is a database initialization on a volume. This would allow the primary
container to use the database. Podman supports the following two classes of init
containers:

 Once—Only runs the first time the pod is created
 Always—Runs every time the pod is started

The primary container runs the application.

Pod

conmon

Infra

container

The conmon process
monitors each
container.

The infra container
holds open cgroups
and Linux namespaces.

Cgroups

Linux namespaces

PID NET UTS IPC USER, , , , and

Figure 4.1 The Podman pod launches
conmon with the infra container, which will
hold cgroups and Linux namespaces.

794.1 Running pods
Pods also support additional containers, which are often called sidecar containers (see
figure 4.4). Sidecar containers often monitor the primary container, as seen in fig-
ure 4.3, or the environment where the primary container runs. The Kubernetes docu-
mentation (https://kubernetes.io/docs/concepts/workloads/pods) describes pods with
sidecar containers as follows:

A Pod can encapsulate an application composed of multiple co-located containers that
are tightly coupled and need to share resources. These co-located containers form a single
cohesive unit of service—for example, one container serving data stored in a shared
volume to the public, while a separate sidecar container refreshes or updates those files.
The Pod wraps these containers, storage resources, and an ephemeral network identity
together as a single unit.

If you want to dive deeper into sidecar containers, there are several good articles on
the following website: https://www.magalix.com/blog/the-sidecar-pattern.

Pod

Infra

container

Init

container(s)

The optional Init
container joins infra
container cgroups
and namespaces
and then runs to
completion.

Cgroups

conmonconmon

Figure 4.2 Podman next launches any init
containers with conmon. The init containers
examine the infra container and join its cgroups
and namespaces.

With the init
container(s)
completed, Podman
starts the primary
container, joined to
the infra container’s
cgroups and
namespaces.

Pod

Infra

container

Primary

container

Cgroups

Linux namespaces

PID NET UTS IPC USER, , , , and

conmonconmon

Figure 4.3 Podman waits until the init
containers complete before launching
the primary containers with their
conmon into the pod.

https://kubernetes.io/docs/concepts/workloads/pods
https://www.magalix.com/blog/the-sidecar-pattern

80 CHAPTER 4 Pods
NOTE While pods can support more than one sidecar container, I recom-
mend you only use one. There is a real temptation for people to abuse this
capability, especially in Kubernetes, but it can use up more resources and
become unwieldy.

A big advantage of using pods is that you can manage them as discrete units. Starting a
pod starts all of the containers within it, and stopping the pod stops all of the containers.

4.2 Creating a pod
In this section, you will create a pod in which you have the myimage application as the
primary container within the pod. You will also add a second container to the pod, a
sidecar container, which will update the web content used by your application to show
two containers working together within a pod.

 You can create a pod named mypod using the podman pod create command, as
demonstrated in the following command:

$ podman pod create -p 8080:8080 --name mypod --volume ./html:/var/www/html:z
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

The podman pod create command has many of the same options as the podman
container create command. When you create a container within a pod, the con-
tainer inherits these options as its default (see figure 4.5).

 Notice that, like the previous examples, you are binding the pod to port
-p 8080:8080:

$ podman pod create -p 8080:8080 --name mypod --volume ./html:/var/www/html:z

Because the containers within the pod share the same network namespace, this port
binding is shared by all of the containers. The kernel allows only one process to listen

conmon

Sidecar

container

Pods can have 0 or more
sidecar containers monitoring
the primary container.

Pod

Infra

container

Primary

container

Cgroups

Linux namespaces

PID NET UTS IPC USER, , , , and

conmon conmonconmon
conmon

Figure 4.4 Podman can launch additional
containers called sidecar containers.

814.3 Adding a container to a pod
on port 8080. Lastly, notice that the ./html directory was volume mounted, --volume
./html:/var/www/html:z, into the pod:

$ podman pod create -p 8080:8080 --name mypod --volume ./html:/var/www/html:z

The :z parameter causes Podman to relabel the content of the directory. Podman will
automatically volume mount this directory into every container that joins the pod.
Containers in pods share the same SELinux label, which means they can share the
same volumes.

4.3 Adding a container to a pod
You create a container within a pod using the podman create command (see figure 4.6).
Add the quay.io/rhatdan/myimage container to the pod with the --pod mypod option:

$ podman create --pod mypod --name myapp quay.io/rhatdan/myimage
Cec045acb1c2be4a6e4e88e21275076fb1de5519a25fb5a55f192da70708a640

Mypod

conmon

Infra holds namespaces,
including the network
namespace bound to port
8080 along with the volume
mount and cgroups.

Infra

container

Volume->./html:/var/www/html

Cgroups

Linux namespaces

NET->"8080:8080" PID UTS IPC USER, , , , and

Figure 4.5 Podman creates a network
namespace and binds port 8080 within
the container to port 8080 on the host.
Podman creates the infra container with
the /var/www/html directory from the
host in the container and joins the cgroups
and network namespace.

myapp

Podman joins the
myapp container to
the infra container
namespaces, adding
volume and network
namespace bindings.

Mypod

conmon conmon

Infra

container

Volume->./html:/var/www/html

Cgroups

Linux namespaces

NET->"8080:8080" PID UTS IPC USER, , , , and

Figure 4.6 Because the pod does not have
any init containers, the first myapp container
is launched into the pod.

82 CHAPTER 4 Pods
When you add the first container to the pod, Podman reads the information associ-
ated with the infra container and adds the volume mount to the myapp container and
then joins it to the namespaces held by the infra container. The next step is adding the
sidecar container to the pod. The sidecar container will be updating the index.html file
in the /var/www/html volume, adding a new time stamp every second.

 Create a simple Bash script to update the index.html used by the myapp container,
called html/time.sh. You can create it in the ./html directory, so it will be available to
processes within the pod:

$ cat > html/time.sh << _EOL
#!/bin/sh
data() {
 echo "<html><head></head><body><h1>"; date;echo "Hello World</h1></body></html>"
 sleep 1
}
while true; do
 data > index.html
done
_EOL

Make sure it is executable. You can do this on Linux with the chmod command:

$ chmod +x html/time.sh

Now create the second container (--name time), this time using a different image:
ubi8. Containers within pods can use totally different images, even images from differ-
ent distributions. Recall that container images only share the host kernel by default:

$ podman create --pod mypod --name time --workdir /var/www/html ubi8 ./time.sh
Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/000-

shortnames.conf)
Trying to pull registry.access.redhat.com/ubi8:latest…
…
1be0b2fae53029d518e75def71c0d6961b662d0e8b4a1082edea5589d1353af3

Remember the concept of short names covered in chapter 2. You can type the long
name, registry.access.redhat.com/ubi8, but that is a lot of typing. Luckily for us, the
short name, ubi8, already had an alias map to its long name, meaning you do not
need to select it from the list of registries. Podman shows you where it found the alias
for the long name in the output:

$ podman create --pod mypod --name time --workdir /var/www/html ubi8 ./time.sh
Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/000-short-

names.conf)

You also used the --workdir command option to set the default directory for the con-
tainer to /var/www/html. When the container starts, the ./time.sh will run in the
workdir and is actually /var/www/html/time.sh (see figure 4.7):

$ podman create --pod mypod --name time --workdir /var/www/html ubi8 ./time.sh

834.4 Starting a pod
Because this container will be run within the mypod pod, it will inherit the
-v ./html:/var/www/html option from the pod, meaning the ./html/time.sh com-
mand in the host directory is available to every container within the pod.

Podman examines the infra container, mounts the /var/www/html volume, and joins
the namespaces when it launches the sidecar container. Now it is time to start the pod
and see what happens.

4.4 Starting a pod
You can start the pod with the podman pod start command:

$ podman pod start mypod
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

Use the podman ps command to see which containers the pod started:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
b9536ea4a8ab localhost/podman-pause:4.0.3-1648837314 14

minutes ago Up 5 seconds ago 0.0.0.0:8080->8080/tcp 8920b1ccd8b0-
infra

a978e0005273 quay.io/rhatdan/myimage:latest /usr/bin/run-http... 14
minutes ago Up 5 seconds ago 0.0.0.0:8080->8080/tcp myapp

be86937986e9 registry.access.redhat.com/ubi8:latest ./time.sh 13
minutes ago Up 5 seconds ago 0.0.0.0:8080->8080/tcp time

Notice now that three containers have started. The infra container is based on the
k8s.gcr.io/pause image, your application is based on quay.io/rhatdan/myimage:latest,
and the update container is based on the registry.access.redhat.com/ubi8:latest image.

 When the ubi8 sidecar container starts, it begins modifying the index.html via the
time.sh script. Since the myapp container shares the volume mount, /var/www/html,
it can see the changes in the /var/www/html/index.html file. Launch your favorite

Mypod

myapp Time
[/var/www/html/time.sh]

conmon conmon conmon

Infra
container

Volume->./html:/var/www/html

Cgroups

Linux namespaces
NET->"8080:8080" PID UTS IPC USER, , , , and

Figure 4.7 Finally, Podman
launches the sidecar container
named time.

84 CHAPTER 4 Pods
web browser, and navigate to http://localhost:8080 to verify the application is work-
ing, as seen in figure 4.8.

A couple of seconds later, press the Refresh button. Notice the date changes, indicat-
ing the sidecar container is running and updating the data used by the myapp web
server running within the primary container, as seen in figure 4.9.

Some notable podman pod start options include the following:

 --all—This tells Podman to start all pods.
 --latest—The -l tells Podman to start the last pod created. (This is not avail-

able on Mac and Windows.)

Now that you have run the application within a pod, you might want to stop the
application.

4.5 Stopping a pod
Now that you see the application ran successfully, you can stop the pod with the
podman pod stop command, as follows:

$ podman pod stop mypod
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

Use the podman ps command to make sure Podman stopped all the containers
within the pod:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Figure 4.8 The web browser communicates with myapp running in a pod.

Figure 4.9 The web browser shows that the content in myapp has been
changed by the second container running in the pod.

854.7 Removing pods
Some notable podman pod stop options include the following:

 --all—This tells Podman to stop all pods.
 --latest—The -l tells Podman to stop the most recently started pod.
 --timeout—The -t tells Podman to set the timeout when attempting to stop

the containers within a pod.

Now that you have created, run, and stopped the pod, you can start examining it.
First, list all the pods on your system.

4.6 Listing pods
You can list pods with the podman pod list command:

$ podman pod list
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
790fefe97b28 mypod Exited 22 minutes ago b9536ea4a8ab 3

Some notable podman pod list options include the following:

 --ctr*—This tells Podman to list container information within pods.
 --format—This tells Podman to change the output of pods.

Now that you are done with the demonstration, time to clean up the pods and containers.

4.7 Removing pods
In a chapter 8, I discuss how you can generate Kubernetes YAML files to allow you to
launch your pod on other systems using Podman or within Kubernetes. But for now,
you can remove a pod with the podman pod rm command.

 Before you do this, list --all the containers on the system. Using the --format
option to show only the ID, image, and pod ID, you will see three containers that
make up your pod:

$ podman ps --all --format "{{.ID}} {{.Image}} {{.Pod}}"
b9536ea4a8ab k8s.gcr.io/pause:3.5 790fefe97b28
a978e0005273 quay.io/rhatdan/myimage:latest 790fefe97b28
be86937986e9 registry.access.redhat.com/ubi8:latest 790fefe97b28

Now you can remove the pod with the following command:

$ podman pod rm mypod
790fefe97b280e5f67c526e3a421e9c9f958cf5a98f3709373ef1afd91965955

Make sure it is gone:

$ podman pod ls
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS

Good! It looks like your pod is gone. Verify that Podman removed all of the containers
by running the following command:

$ podman ps -a --format "{{.ID}} {{.Image}}"

86 CHAPTER 4 Pods
The system is fully cleaned up.
 Some notable podman pod rm options include the following (also see table 4.1):

 --all—This tells Podman to remove all the pods.
 --force—This tells Podman to first stop all running containers before attempt-

ing to remove them. Otherwise, Podman will only remove non-running pods.

Summary
 Pods are a way of grouping containers together into more complex applica-

tions, sharing namespaces, and sharing resource constraints.
 Pods share most of the options containers use, and when you add a container to

a pod, it shares these options with all containers in the pod.

Table 4.1 podman pod commands

Command Man page Description

create podman-pod-create(1) Create a new pod.

exists podman-pod-exists(1) Check if a pod exists.

inspect podman-pod-inspect(1) Display detailed information on a pod.

kill podman-pod-kill(1) Send a signal to the primary processes of the contain-
ers in the pod.

list podman-pod-list(1) List all of the pods.

logs podman-pod-logs(1) Fetch logs for the pod with one or more containers.

pause podman-pod-pause(1) Pause all the containers in a pod.

prune podman-pod-prune(1) Remove all stopped pods and their containers.

restart podman-pod-restart(1) Restart a pod.

rm podman-pod-rm(1) Remove one or more pods.

stats podman-pod-stats(1) Display statistics for the containers in a pod.

start podman-pod-start(1) Start a pod.

stop podman-pod-stop(1) Stop a pod.

top podman-pod-top(1) Display running process in the pod.

unpause podman-pod-unpause(1) Unpause all the containers in a pod.

Part 2

Design

Part 2 of the book covers the underlying design of Podman. Chapter 5 explains
all of the different configuration files used with Podman. Podman is developed
using multiple different container libraries, each with a distinct method of con-
figuration. You learn how to configure your container storage and where to store
your containers as well as images. You also learn how to configure the container
registries you use for pulling and pushing container images. Finally, you learn
about containers.conf, which allows you to fully customize the way Podman works.
Basically, you can change the default values used by the Podman CLI for every
container you create.

 Chapter 6 then takes a deep dive into how rootless containers work. Rootless
containers are a key feature of Podman that allows you to fully work with contain-
ers and pods as a normal user, without any additional privileges. This chapter also
introduces you to how the user namespace works and allows you to use more than
a single UID within a container, without being root. Finally, you will learn some of
the problems with rootless containers and how to work around them.

Customization and
configuration files
Container engines like Podman have dozens of hardcoded defaults built into them.
These defaults determine many aspects of the functional and nonfunctional behav-
iors of Podman, such as network and security settings. Podman developers try to
pick the maximum amount of security but still allow most containers to run success-
fully. Similarly, I want as much isolation from the host as possible.

 The security defaults include which Linux capabilities to use, which SELinux
labels to set, and the set of syscalls available to the containers. There are defaults
for resource constraints, like memory usage and maximum processes allowed within

This chapter covers
 Using Podman configuration files based on

libraries used

 Configuring the storage.conf file

 Using the registries.conf and policy.json files
for configuration

 Using the containers.conf file to configure
other defaults

 Using system configuration files to allow
non-root users namespace access
89

90 CHAPTER 5 Customization and configuration files
a container. Other defaults include the local path for storing images, the list of con-
tainer registries, and even system configuration to allow rootless mode to work. The
Podman developers wanted to allow users to have ultimate control over these defaults,
so the container engine configuration files provide a mechanism for customizing the
way Podman and other container engines run.

 The problem with defaults is that they are best-guess estimates from developers.
While most users run Podman in default configuration, sometimes there is a need to
change the configuration. Not every environment has the same configuration, and
you might want to default certain machines to different levels of security and different
registry configurations. Even rootless users might need different configurations than
rootful users. In this chapter, I will show you how to customize different parts of Pod-
man and explain where you can find more information about all of the different
knobs available to you.

 As you have learned in previous chapters, Podman uses multiple libraries to per-
form different tasks when working with containers. Table 5.1 describes the different
libraries Podman uses.

Each of these libraries has separate configuration files used to set the default settings
for the particular library, with the exception of Buildah. The container engines, Pod-
man, and Buildah share the containers/common configuration file containers.conf,
described in section 5.3.

NOTE All of the nonsystem configuration files used by Podman use the TOML
format. TOML’s syntax consists of name = “value” pairs, [section names], and #
comments. The format of TOML can be simplified to the following:

 [table]

 option = value
 [table.subtable1]

 option = value

Table 5.1 Container libraries used by Podman

Library Description

containers/storage Defines the storage of container images and other basic storage used by con-
tainer engines

containers/image Defines the mechanisms used to move container images from different types of
storage; usually used between container registries and local container storage

containers/common Defines all of the default configuration options for container engines not defined
in containers/storage or containers/image

containers/buildah As explained in chapter 2, it is used for building container images into local stor-
age using rules defined in a Containerfile or Dockerfile; for more information on
Buildah, see appendix A.

915.1 Configuration files for storage
 [table.subtable2]

 option = value

See https://toml.io for a more complete explanation of the TOML language. When
configuring Podman, usually one of the first concerns is where you are going to store
your containers and images.

5.1 Configuration files for storage
Podman uses the github.com/containers/storage library, which provides methods for
storing filesystem layers, container images, and containers. Configuration of this library
is done using the storage.conf configuration file, which can be stored in multiple dif-
ferent directories.

 Linux distributions often provide a /usr/share/containers/storage.conf file, which
can be overridden by creating a /etc/containers/storage.conf file. Rootless users can
store their configuration in the $XDG_CONFIG_HOME/containers/storage.conf file;
if the $XDG_CONFIG_HOME environment variable is not set, the $HOME/.config/
containers/storage.conf file is used. Most users will never change the storage.conf file,
but in a few situations, advanced users need to do some customizations. The most
common reason for changes is relocating the container’s storage.

NOTE When using Podman in remote mode, for example on a Mac or Win-
dows box, the Podman service uses the storage.conf files located in the Linux
box. To modify them, you need to enter the VM. When using the Podman
machine, execute the podman machine ssh command to enter the VM. See
appendixes E and F for more information.

Podman reads only one storage.conf and ignores all subsequent ones. Podman first
attempts to use the storage.conf from your home directory; next goes the /etc/storage/
storage.conf; and finally, if both files do not exist, Podman reads the /usr/share/
containers/storage.conf file. You can see the storage.conf file your Podman command
is using via the podman info command:

$ podman info --format '{{ .Store.ConfigFile }}'
/home/dwalsh/.config/containers/storage.conf

5.1.1 Storage location

By default rootless Podman is configured to store your images in the $HOME/.local/
share/containers/storage directory. The default rootful storage location is /var/lib/
containers/storage.

 Sometimes you need to change this default location. Perhaps you don’t have enough
disk space in /var or in the user’s home directory, so you want to store your images on a
different disk. The storage.conf file calls the storage location the graphRoot, and it can
be overridden in /etc/containers/storage.conf for rootful containers.

http://github.com/containers/storage
https://toml.io

92 CHAPTER 5 Customization and configuration files
 In this section, you will modify the location of the graph driver to /var/mystorage.
First, become root and make sure the /etc/containers/storage.conf file exists. If it
does not exist, just copy the /usr/share/containers/storage.conf file into it:

$ sudo cp /usr/share/containers/storage.conf /etc/containers/storage.conf

NOTE Some distributions just ship the /etc/containers/storage.conf.

Now, make a backup, and open /etc/containers/storage.conf file for editing:

$ sudo cp /etc/containers/storage.conf /etc/containers/storage.conf.orig
$ sudo vi /etc/containers/storage.conf

Set the graphdriver variable graphroot = "/var/lib/containers/storage" to
graphroot = "/var/mystorage", and save the file.

 Your storage.conf file should include the following:

$ grep -B 1 graph /etc/containers/storage.conf
Primary Read/Write location of container storage
graphroot = "/var/mystorage"

Execute podman info to see if the change took place:

$ sudo podman info
…
Store:
 configFile: /etc/containers/storage.conf
...
 graphDriverName: overlay
 graphOptions:
 overlay.mountopt: nodev,metacopy=on
 graphRoot: /var/mystorage
...
 volumePath: /var/mystorage/volumes

Notice in the storage section that the graphRoot is now /var/mystorage. All images
and containers will be stored in this directory.

 Now run the podman info command in rootless mode. The storage location will
not change; it is still /home/dwalsh/.local/share/containers/storage:

$ podman info
store:
 configFile: /home/dwalsh/.config/containers/storage.conf
 containerStore:
 number: 27
 paused: 0
 running: 0
 stopped: 27
 graphDriverName: overlay
 graphOptions: {}
 graphRoot: /home/dwalsh/.local/share/containers/storage

935.1 Configuration files for storage
You can create a $HOME/.config/containers/storage.conf and change it there, but
this does not scale well for systems with multiple users. The key rootless_storage_
path allows you to change the location for all users on your system.

 This time, uncomment and modify the rootless_storage_path line:

$ sudo vi /etc/containers/storage.conf

Modify the rootless_storage_path line in storage.conf from

rootless_storage_path = "$HOME/.local/share/containers/storage"

Change it to

rootless_storage_path = "/var/tmp/$UID/var/mystorage"

Save the storage.conf file. When you are done, it should look like this:

$ grep -B 3 rootless_storage_path /etc/containers/storage.conf
Storage path for rootless users
#
rootless_storage_path = "/var/tmp/$UID/var/mystorage"

Now run podman info to see the changes. Notice that the graphRoot now points at the
/var/tmp/3267/var/mystorage directory:

$ podman info
…
store:
 configFile: /home/dwalsh/.config/containers/storage.conf
...
 graphOptions: {}
 graphRoot: /var/tmp/3267/var/mystorage

Container/storage supports expanding the $HOME and $UID environment variables for
this path. To revert changes, copy and restore the original storage.conf file:

$ sudo cp /etc/containers/storage.conf.orig /etc/containers/storage.conf

NOTE If you are running on an SELinux system and change the default loca-
tion of storage, you need to inform SELinux about it, using the following
semanage command. This will tell SELinux to label the new location as if it was
in the old location. Next, you will need to change the labeling on disk using the
restorecon command. You can do this with the following commands:

sudo semanage fcontext -a -e /var/lib/containers/storage /var/mystorage
 sudo restorecon -R -v /var/mystorage

94 CHAPTER 5 Customization and configuration files
In rootless mode you need to do the following:

sudo semanage fcontext -a -e $HOME/.local/share/containers/storage/

➥ var/tmp/3267/var/mystorage
sudo restorecon -R -v /var/tmp/3267/var/mystorage

Sometimes you might want to change the storage driver or, more likely, the configura-
tion of the storage driver.

5.1.2 Storage drivers

Recall the wedding cake illustration from chapter 2. This illustration shows that images
are often made of multiple layers. These layers are stored on disk by the container/
storage library, but when you are running a container on them, each layer needs to be
mounted on the previous layer (figure 5.1).

Container/storage uses a Linux kernel filesystem concept called a layered filesystem to
do this. Podman, using container/storage, supports multiple different types of lay-
ered filesystems. In Linux, these filesystems are called copy-on-write (CoW) filesystems.
In containers/storage, these different filesystem types are called drivers. By default
Podman uses the overlay storage driver.

NOTE Docker supports two types of overlay drivers: overlay and overlay2.
overlay2 was an improvement over overlay, and the original overlay driver
is rarely used any more. In contrast, Podman uses the newer overlay2 driver
and just calls it overlay. You can select the overlay driver in Podman, but
this is just an alias for overlay2.

Table 5.2 lists all of the storage drivers Podman and containers/storage support. I rec-
ommend you just stick to the overlay driver, since this is the driver the vast majority
of the world uses.

registry.acccess.redhat.com/ubi8:latest

Images are layered on top of each
other, inheriting files from the
lower-layer images as well as
adding, removing, and replacing
lower-level files. localhost/myimage:latest

registry.access.redhat.com/ubi8/httpd-24:latest

The lowest layer is called the
base image. Usually, container
libraries and package management
tools help create new layers.

Figure 5.1 Layered images stacked on one another are reassembled and mounted using
container/storage.

955.1 Configuration files for storage
OVERLAY STORAGE OPTIONS

The overlay driver has some interesting customization options. These options are
located in the storage.conf [storage.options.overlay] table.

 There are several advanced options available for configuring the overlay driver. I’ll
quickly mention a few to describe use cases.

 The mount_program option allows you to specify an executable to use instead of
the kernel overlay driver. Podman usually ships with the fuse-overlayfs executable,
which provides a FUSE (userspace) overlay driver. Podman automatically fails over to
the fuse-overlayfs mount_program if it is installed on systems where rootless native
overlay is not supported. Most kernels support native overlay; however, there are use
cases when you might want to configure the mount_program. The fuse-overlayfs has
advanced features not currently supported in the native overlay.

 Podman is quickly being adopted by the high-performance computing (HPC)
community. The HPC community does not allow rootful containers, and in many
cases it allows workloads to run only with a single UID. This means some HPC systems
do not allow user namespaces with multiple UIDs. Since many images come with mul-
tiple UIDs, Podman added an ignore_chown_errors option to containers/storage to
allow images with files with different UIDs to be flattened into a single UID. Table 5.3
lists all the current storage options supported by container storage.

NOTE You have examined a few of the storage.conf fields, but there are many
more. Use the containers-storage.conf man page to explore all of them:

https:/ /github.com/containers/storage/blob/main/docs/containers-
storage.conf.5.md

$ man containers-storage.conf

Table 5.2 Container storage drivers

Storage drivers Description

overlay
(overlay2)

This is the default driver, and I strongly recommend its use. It is based on the Linux
kernel overlay filesystem. overlay and overlay2 are exactly the same in Pod-
man. It is the most tested driver, which the overwhelming majority of users use.

vfs This is the simplest driver; it creates full copies of each lower layer up onto the
next layer. It works everywhere but is slow and very disk intensive.

devmapper This driver was heavily used when Docker first became popular—before the
overlay driver was available. It reallocates the size of each layer at a maximum
size. It is not recommended any longer.

aufs This driver was never merged into the upstream kernel, so it is only available on a
few Linux distributions.

btrfs This driver allows storage on btrfs snapshots based on the Btrfs filesystem. Some
users have had success using this filesystem.

zfs This driver uses the ZFS filesystem, which is a proprietary filesystem and not avail-
able on most distributions.

96 CHAPTER 5 Customization and configuration files
Now you know about configuring the container storage! The next configuration you
will look at is container registry access.

5.2 Configuration files for registries
Podman uses the github.com/containers/image library for pulling and pushing con-
tainer images, usually from container registries. Podman uses the registries.conf config-
uration file to specify registries and the policy.json file for signature verification of
images. As with the container storage storage.conf, most users never modify these files
and just use the distribution defaults.

5.2.1 registries.conf

The registries.conf configuration file is a system-wide configuration file for container
image registries. Podman uses $HOME/.config/containers/registries.conf if it exists;
otherwise, it uses /etc/containers/registries.conf.

NOTE When using Podman in remote mode, for example on a Mac or Win-
dows box, registries.conf files are stored in the Linux box on the server side.
You need to ssh into the Linux box to make the changes. With a Podman

Table 5.3 Container storage drivers

Storage drivers Description

ignore_chown_errors Ignore chowning file UIDs for rootless containers with a single UID. There
is no entry in /etc/subuid.

mount_program Path to a helper program to use for mounting the filesystem instead of
using a kernel overlay to mount it. Older kernels did not support rootless
overlay.

mountopt Comma-separated list of mount options to be passed to the kernel. It
defaults to "nodev,metacopy=on".

skip_mount_home Do not create PRIVATE bind mounts on the storage home directory.

inode Maximum number of inodes in a container image

size Maximum size of a container image

force_mask Permissions mask for new files and directories in an image. The values are
the following:

 private—This sets all filesystem objects to 0700. No other users on
the system can access the files.

 shared—This is equivalent to 0755. Everyone on the system can read,
access, and execute files in the image. This is useful for sharing container
storage with other users.

All files within the image are made readable and executable by any user on
the system. Even /etc/shadow within your image is now readable by any user.
When force_mask is set, the original permission mask is stored in xattrs,
and the mount_program, like /usr/bin/fuse-overlayfs, presents the xattr
permissions to processes within containers.

975.2 Configuration files for registries
machine, you can execute podman machine ssh. See appendixes E and F for
more information.

The main key value to use with the registries.conf file is unqualified-search-
registries. This field specifies an array of host[:port] registries to try when pulling
via short names, in order. If you specify only one registry in the unqualified-search-
registries option, Podman will work similarly to Docker and force a single registry
on the user.

 In this exercise, you will modify the default search registries to be used by Podman.
First, you need to make a backup of the /etc/containers/registries.conf file, and then
remove docker.io and add example.com:

$ sudo cp /etc/containers/registries.conf
/etc/containers/registries.conf.orig

$ sudo vi /etc/containers/registries.conf

Modify the following line:

unqualified-search-registries = ["registry.fedoraproject.org",
"registry.access.redhat.com", "docker.io", "quay.io"]

Change the line to

unqualified-search-registries = ["registry.fedoraproject.org",
"registry.access.redhat.com", "example.com", "quay.io"]

Save the file, then execute podman info to verify the changes:

$ podman info
registries:
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - example.com
 - quay.io

Now, if you attempt to pull via an unknown short name, you should see the following
prompt:

$ podman pull foobar
? Please select an image:
 ▸ registry.fedoraproject.org/foobar:latest
 registry.access.redhat.com/foobar:latest
 example.com/foobar:latest
 quay.io/foobar:latest

Copy the original to the registries.conf file:

$ sudo cp /etc/containers/registries.conf.orig /etc/containers/registries.conf

98 CHAPTER 5 Customization and configuration files
Table 5.4 describes all of the options available in registries.conf files.

BLOCKING PULLING FROM CONTAINER REGISTRIES

Another interesting thing you can configure in registries.conf is the ability to block
users from pulling from a container registry. In the following example, you will config-
ure registries.conf to block pulls from docker.io. The registries.conf file has a specific
[[registry]] table entry that can specify how to handle individual container regis-
tries. You can add this table multiple times—once per registry:

$ sudo vi /etc/containers/registries.conf

Add the following:

[[registry]]
Location = "docker.io"
blocked=true

Save the file. Examine the settings using podman info:

$ podman info
…
registries:
 Docker.io:
 Blocked: true
 Insecure: false
 Location: docker.io
 MirrorByDigestOnly: false
 Mirrors: null
 Prefix: docker.io

Table 5.4 Container registries.conf global fields

Fields Description

unqualified-
search-registries

An array of host[:port] registries to try when pulling an unqualified image,
in order.

short-name-mode Determines how Podman should handle short names. The values include the
following:

 enforcing—If there is one unqualified search registry, use it. If there are
two or more registries defined and you are running Podman in a terminal,
prompt the user to select one of the search registries; otherwise, there will
be an error.

 permissive—Behaves as enforcing but does not lead to an error if no
terminal: just uses each entry in unqualified search registries until success.

 disabled—Use all unqualified search registries without prompting.

credential-
helpers

An array of default credential helpers is used as external credential stores.
Note that containers-auth.json is a reserved value to use auth files as speci-
fied in containers-auth.json(5). The credential helpers are set to
["containers-auth.json"] if none are specified.

995.2 Configuration files for registries
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - docker.io
 - quay.io

Now, attempt to pull an image from docker.io:

$ podman pull docker.io/ubuntu
Trying to pull docker.io/library/ubuntu:latest…
Error: initializing source docker:/ /ubuntu:latest: registry docker.io is

blocked in /etc/containers/registries.conf or
/home/dwalsh/.config/containers/registries.conf.d

This demonstrates that administrators have the ability to block content from specific
registries. Table 5.5 describes the suboptions available for the [[registry]] table in
the registries.conf file.

NOTE Copy the original registries.conf to pull from docker.io for the rest of
this book:

$ sudo cp /etc/containers/registries.conf.orig/

➥ etc/containers/registries.conf

Some users work on systems that are fully isolated from the internet but still need to
use applications that rely on images from the internet. An example of this situation
is if you have an application that expects to use registry.access.redhat.com/ubi8/
httpd-24:latest but has no access to registry.access.redhat.com on the internet. You
can download the image and put it onto an internal registry and then configure reg-
istries.conf with a mirror registry. If you configure an entry in registries.conf, it will
look like this:

[[registry]]
location="registry.access.redhat.com"
[[registry.mirror]]
location="mirror-1.com"

Table 5.5 [[registry]] table fields

Fields Description

location Name of the registry/repository to apply the filters on

prefix Select the specified configuration when attempting to pull an image matched by the specific
prefix.

insecure If true, unencrypted HTTP as well as TLS connections with untrusted certificates are
allowed.

blocked If true, pulling images with matching names is forbidden.

100 CHAPTER 5 Customization and configuration files
Then your users can use the podman pull command:

$ podman pull registry.access.redhat.com/ubi8/httpd-24:latest

Podman actually pulls mirror-1.com/ubi8/httpd-24:latest, but users will not notice
the difference.

NOTE You have examined a few of the registries.conf fields, but there are
many more. Use the containers-registries.conf(5) man page to explore
all of them:

$ man containers-registries.conf
https:/ /github.com/containers/image/blob/main/docs/containers-

registries.conf.5.md

Now that you know how to configure storage and registries, it is time to look at how to
configure all of the options central to Podman.

5.3 Configuration files for engines
Podman and other container engines use the github.com/containers/common library
for handling the default settings not related to container storage or container regis-
tries. These configuration settings come from the containers.conf file. Podman reads
the files in table 5.6 if they exist.

When running in rootless mode, Podman also reads the files in table 5.7 if they exist.

Unlike storage.conf and registries.conf, containers.conf files are merged together,
and they do not fully override previous versions. Individual fields can override the

Table 5.6 containers.conf files read by both rootful and rootless Podman

File Description

/usr/share/containers/containers.conf Usually shipped with the distribution defaults

/etc/containers/containers.conf System administrator can use this file to set and modify
different defaults.

/etc/containers/containers.conf.d/*.conf Some package tools might drop additional default files
into this directory, sorted numerically.

Table 5.7 containers.conf files read by rootless Podman

File Description

$HOME/.config/containers/containers.conf Users can create this file to override system defaults.

$HOME/.config/containers/contain-
ers.conf.d/*.conf

Users can also drop files here if they want, and they will
be sorted numerically.

1015.3 Configuration files for engines
same field in the higher-level containers.conf file. Podman does not require any con-
tainers.conf file to exist, since it has built-in defaults. Most systems come with only the
distribution default overrides in /usr/share/containers/containers.conf.

NOTE Podman supports the CONTAINERS_CONF environment variable,
which forces Podman to use the target of the $CONTAINERS_CONF. All other
containers.conf files are ignored. This is useful for testing environments or
making sure no one has customized the Podman defaults.

containers.conf currently supports five different tables, as shown in table 5.8. You
need to be careful that you are in the correct table when you modify options.

Many users of Podman want to change the default ways it launches containers in an
environment. I previously explained how the HPC community wants to use Podman to
run their workloads, but they are very specific about the volumes that get added to con-
tainers, which environment variables are added, and which namespaces are enabled.

 Perhaps you want all of your containers to have the same environment variables set.
Let’s try an example. Run podman to show the default environment in the ubi8 image.

$ podman run --rm ubi8 printenv
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
container=oci
HOME=/root
HOSTNAME=ba4acf180386

NOTE When using Podman in remote mode, for example on a Mac or Win-
dows box, most of the settings of the containers.conf files are used from the
Linux box on the server side. A containers.conf file in the user’s home direc-
tory is used for storing connection data, which is covered in chapter 9. Mac
and Windows clients are covered in appendixes E and F.

Table 5.8 Containers.conf tables

Table Description

[containers] Configuration on running individual containers. Examples are the name-
spaces to stick containers in, whether or not SELinux is enabled, and
default environment variables for containers.

[engine] Default configurations for Podman to use. Examples are the default log-
ging system, paths for OCI runtimes to use, and the location of conmon.

[service_destinations] Remote connection data for use with podman --remote. Remote ser-
vice is covered in chapter 9.

[secrets] Information about the secrets plugin driver to use for containers

[network] Special configuration for network configuration, including the default net-
work name, location of CNI plugins, and default subnets

102 CHAPTER 5 Customization and configuration files
Now create an env.conf file in the home directory with the env="[foo=bar]" set:

$ mkdir -p $HOME/.config/containers/containers.conf.d
$ cat << _EOF > $HOME/.config/containers/containers.conf.d/env.conf
[containers]
env=["foo=bar"]
_EOF
Run any container and you see the foo=bar environment set.
$ podman run --rm ubi8 printenv
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
container=oci
foo=bar
HOME=/root
HOSTNAME=406fc182d44b

I use containers.conf when configuring Podman to run within a container. Many users
want to run Podman within a container for CI/CD systems or for just testing out
newer versions of Podman than their distribution enables. Because lots of people were
having a hard time running Podman in a container, I decided to try to create a default
image, quay.io/podman/stable, to help them. While creating that image, I realized
several of the Podman defaults did not work well when running it within a container,
so I used containers.conf to change those settings. You can see my containers.conf file
at this link: http://mng.bz/o5DM.

 You can see the contains.conf by actually running the image:

$ podman run quay.io/podman/stable cat /etc/containers/containers.conf
[containers]
netns="host"
userns="host"
ipcns="host"
utsns="host"
cgroupns="host"
cgroups="disabled"
log_driver = "k8s-file"
[engine]
cgroup_manager = "cgroupfs"
events_logger="file"
runtime="crun"

Here was what I was thinking while writing this file. First, I decided that since Podman
is running inside of a container, I would disable all of the cgroups and namespaces
other than the mount and user namespace. If users set cgroups or configured name-
spaces, then the container run by Podman in a container would follow the parent
Podman’s rules:

[containers]
netns="host"
userns="host"
ipcns="host"
utsns="host"

http://mng.bz/o5DM

1035.3 Configuration files for engines
cgroupns="host"
cgroups="disabled"

The default log_driver, event logger, and cgroup manager on many distributions is
journald and system, respectively, but inside of the container, systemd and journald
are not running, so the container engine needs to use the filesystem:

[containers]
log_driver = "k8s-file"
[engine]
cgroup_manager = "cgroupfs"
events_logger="file"

Finally, use the OCI runtime crun rather than runc, mainly because crun is a lot smaller
than runc:

[engine]
runtime="crun"

Now attempt to run a container within a container. A trick needed to make this
work is running the podman/stable image with --user podman. This causes the
Podman inside the container to run in rootless mode. Since the podman/stable
image uses the fuse-overlay driver within the container, you also need to add the
/dev/fuse device:

$ podman run --device /dev/fuse --user podman quay.io/podman/stable podman

➥ run ubi8-micro echo hi
Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/

➥ 000-shortnames.conf
Trying to pull registry.access.redhat.com/ubi8:latest…
Getting image source signatures
Copying blob sha256:5368f457acd16b337e2b150741f727c46f886c69eea

➥ 1a4d56d0114c88029ed87
...
hi

NOTE You examined a few of the containers.conf fields, but there are many
more. Use the container.conf(5) man page to explore all of them:

$ man containers.conf
https:/ /github.com/containers/common/blob/main/docs/containers.conf.5.md

Now you know more about configuration tools specific to container tools like Pod-
man. Next, you’ll learn about some other system configuration files Podman needs.

104 CHAPTER 5 Customization and configuration files
5.4 System configuration files
When you run rootless Podman, you are using the /etc/subuid and /etc/subgid files
to specify the UID ranges for your containers. As I explained in section 3.1.2, Podman
reads the /etc/subuid and /etc/subgid files for UID and GID ranges allocated for
your user account. Podman then launches /usr/bin/newuidmap and /usr/bin/new-
gidmap, which verifies the range of UIDs and GIDs Podman specified are actually allo-
cated to you. In certain cases you need to modify these files to add UIDs. Tools like
useradd automatically update the /etc/subuid and /etc/subgid when you add new
users to your system. For example, when I installed my laptop, useradd set up my user
account to use UID 3267 and added the mapping dwalsh:100000:65536 to /etc/sub-
uid and /etc/subgid. Figure 5.2 shows what containers based on this mapping look
like on my system.

NOTE You want to keep the ranges of UIDs unique for each user and ensure
they are not overlapping with any system UIDs. Podman and the system do
not verify there is no overlap. If two different users had the same UIDs in
their range, the processes in the containers would be allowed to attack each
other from the user namespace perspective. Verifying this is a manual pro-
cess. The useradd tool automatically selects unique ranges.

As the subuid(5) and subgid(5) man pages explain, each line in /etc/subuid and
/etc/subgid contains a username and a range of subordinate user IDs or GIDs,

4,294,967,296

Contents of my
/etc/subuid file

The UIDs seen by the
container that are not
mapped are treated as
overflow or nobody users.“ ”

Range of UIDs available
within a container

Range of UIDs on the host;
32-bit unsigned int, 0 4,294,967,296–

Figure 5.2 User namespace mapping for containers

105Summary
respectively, that the user is allowed to use. The entry is specified with three fields
delimited by colons. These fields are the following:

 Login name or UID
 Numerical subordinate user ID or group ID
 Numerical subordinate user ID or group ID count

Newer versions of the operating system, specifically the packages that ship /usr/bin/
newuidmap and /usr/bin/newgidmap, are gaining the ability to share the contents of
these files via the network from an LDAP server. On Fedora, these executables are
shipped in the shadow-utils package. Versions 4.9 or later have this feature.

TIP Changes to /etc/subuid and /etc/subgid may not be immediately
reflected in the user’s account. This is a common problem for users who mod-
ify these files after they have already run Podman. But remember: when Pod-
man first runs, it launches the podman pause process in the user namespace,
and then all other containers join this Podman process’s user namespace. To
have a new user namespace take effect, you must execute the podman system
migrate command, which stops the podman pause process and re-creates the
user namespace.

Summary
 Podman has multiple configuration files based on the libraries it uses.
 Configuration files are shared between rootful and rootless environments.
 The storage.conf file is used to configure containers/storage, including the

storage driver as well as the location where containers and their images are to
be stored.

 The registries.conf and policy.json files are used to configure the container/
image library—primarily affecting access to container registries, short names,
and mirror sights.

 The containers.conf file is used to configure all of the other defaults used
within Podman.

 System configuration files /etc/subuid and /etc/subgid are used to configure
the user namespace required for running rootless Podman.

Rootless containers
In this chapter, you will take a deep dive into what is going on when running Pod-
man in rootless mode. I believe it is helpful to understand what is happening when
you run rootless containers and learn about the problems that running in rootless
mode can cause. With the introduction of containerized applications over the last
few years, certain highly secure environments were not able to take advantage of
the new technology.

 High performance computing (HPC) systems run the fastest computers in the
world. These tend to be at national labs and universities and deal with high-security
information. They also handle some of the most secure data in the world and
expressly forbid the use of rootful containers. HPC systems deal with huge data-
sets, including artificial intelligence, nuclear weapons, global weather patterns, and
medical research. These systems tend to have thousands of shared computers, and

This chapter covers
 Why rootless mode is more secure

 How Podman works with the user and mount
namespaces

 The architecture of Podman running in rootless
mode
106

107CHAPTER 6 Rootless containers
they need to be locked down because of their multi-user shared environments. HPC
computing believes running daemons as root is too insecure. If a rogue container pro-
cess breaks out of confinement and gains root access, it can access highly sensitive
data. Administrators of HPC environments couldn’t use Open Container Initiative
(OCI) containers until Podman came along. The HPC community is now working to
move to rootless Podman.

 Similarly, large financial company administrators do not allow users and develop-
ers access to root on their shared computer systems, out of concern for the financial
data involved. The largest financial firms in the world were having difficulty fully
adopting OCI containers. Figure 6.1 shows that even though the Docker client can be
run as non-root, it connects to a root running daemon, giving full root access to the
host OS.

The bottom line is that allowing users on a shared computing system to run container
workloads accessing the same root-running daemon is too insecure. Running each
user’s containers in rootless mode under different users’ accounts is more secure.

Users running workloads
against the root-running
daemon is very insecure.

Docker

client

Docker

daemon

(engine)

Running as root

containerd

daemon

OCI

runtime

Container host Linux

kernel

Container

Figure 6.1 Multiple users’ workloads sharing the same daemon running as root is
inherently insecure.

108 CHAPTER 6 Rootless containers
Figure 6.2 shows multiple users running Podman independent of each other, without
any root access.

Linux was designed from the ground up with a separation between privileged mode
(rootful) and unprivileged mode (rootless). In Linux almost all tasks run without
being privileged. Privileged operations are only required for modifications to the core
operating system. Almost all applications that run in containers, web servers, data-
bases, and user tools run without requiring root. The applications do not modify core
parts of the system. Sadly, most of the images you will find on container registries are
built to require root privileges or at least start as root and then drop privileges.

 In the corporate world, administrators are very reluctant to give out root access to
their users. If you receive a corporate laptop from your employer, usually you are not
granted any root access. Administrators need to control what is installed on their sys-
tems because of scale, and they need to be able to update hundreds to thousands of
machines at the same time, so controlling what is in the OS is critical. If someone else
is administering your machine, they need to control who gets root access.

 As a security person, I still flinch a little when I see sudo without a password. When
I first started working with Docker, I was shocked that it was encouraging the use of

Container host Linux

kernel

Podman

(engine)

OCI

runtime

Container

Podman

(engine)

OCI
runtime

Container

Podman

(engine)

OCI

runtime

Container

Each user’s workload
runs within a separate
user environment,
giving excellent
process separation.

U
s
e
r
s
p
a
c
e

U
s
e
r
s
p
a
c
e

U
s
e
r
s
p
a
c
e

Figure 6.2 Each workload running within its unique user space is more secure.

1096.1 How does rootless Podman work?
the Docker group, giving users full root access on the host, without a password. The
holy grail of hackers is to get a root exploit; this means the hackers gain full control
over the system.

 Bottom line is that if you have a container escape, as bad as that is, you are better
off in rootless mode. This is because the hackers have control over only nonprivileged
processes, as opposed to a root exploit, where they have full control over the system
and all of the data (ignoring other security mechanisms like SELinux). Podman’s
design goals include the ability to run as many workloads as possible without being
root and push the core OS to make it easier for you to run in this more secure mode.

6.1 How does rootless Podman work?
Have you ever wondered what happens behind the scenes of a rootless Podman con-
tainer? In chapter 2, all of the Podman examples were running in rootless mode. Let’s
take a look at what happens under the hood of rootless Podman containers. I’ll
explain each component and then break down all of the steps involved.

NOTE Some of this section is copied and rewritten from the “What Happens
behind the Scenes of a Rootless Podman Container?” blog (https://www.redhat
.com/sysadmin/behind-scenes-podman), written by myself and coworkers
Matthew Heon and Giuseppe Scrivano.

First, let’s first clear out all storage, so you can get a fresh environment, and then run
a container on quay.io/rhatdan/myimage. (Remember that the podman rmi --all
--force command removes all images and containers from storage.)

$ podman rmi --all --force
Untagged: registry.access.redhat.com/ubi8/httpd-24:latest
Untagged: registry.access.redhat.com/ubi8-init:latest
Untagged: localhost/myimage:latest
Untagged: quay.io/rhatdan/myimage:latest
Deleted: d2244a4379d6f1981189d35154beaf4f9a17666ae3b9fba680ddb014eac72adc
Deleted: 82eb390304938f16dd707f32abaa8464af8d4a25959ab342e25696a540ec56b5
Deleted: 8773554aad01d4b8443d979cdd509e7b8fa88ddbc966987fe91690d05614c961

Now that you have a clean system, you need to retrieve the application image, quay.io/
rhatdan/myimage, from the container registry you pushed it to in chapter 2. In the fol-
lowing command, re-create the application on your machine. The command pulls the
image back from the container registry and starts the myapp container on your host.

$ podman run -d -p 8080:8080 --name myapp quay.io/rhatdan/myimage
Trying to pull quay.io/rhatdan/myimage:latest…
…
2f111737752dcbf1a1c7e15e807fb48f55362b67356fc10c2ade24964e99fa09

Now let’s dig deep into what just happened when you ran a rootless Podman con-
tainer. The first thing that happened was Podman needed to set up the user name-
space. In the next section, I explain why, and how it works.

https://www.redhat.com/sysadmin/behind-scenes-podman
https://www.redhat.com/sysadmin/behind-scenes-podman
https://www.redhat.com/sysadmin/behind-scenes-podman

110 CHAPTER 6 Rootless containers
6.1.1 Images contain content owned by multiple user identifiers (UIDs)

In Linux, user identifiers (UIDs) and group identifiers (GIDs) are assigned to pro-
cesses and stored on filesystem objects. The filesystem objects also have permission
values assigned to them. Linux controls the processes’ access to the filesystem based
on these UIDs and GIDs. This access is called discretionary access control (DAC).
When you log in to a Linux machine, your rootless user processes run with a single
UID—say, 1000—but container images usually come with multiple different UIDs in
their image layers. Let’s examine the UIDs needed to run our image. In this exam-
ple, you examine all the UIDs defined within the container image by running another
container.

 In the following command, launch a container with the quay.io/rhatdan/myimage
image. You need to run the container as root (--user=root) inside the container to
examine every file within the image.

$ podman run --user=root --rm quay.io/rhatdan/myimage -- bash -c "find /

➥ -mount -printf \”%U=%u\n\” | sort -un" 2>/dev/null

Since this is only a temporary container, use the --rm option to make sure the con-
tainer is removed when it finishes running. The container runs a Bash script, which
finds all of the UIDs and users associated with every file/directory in the container.
The script pipes the output to show unique entries and redirects stderr to /dev/null
to eliminate any errors.

$ podman run --user=root --rm quay.io/rhatdan/myimage -- bash -c "find /

➥ -mount -printf \”%U=%u\n\” | sort -un" 2>/dev/null
0=root
48=apache
1001=default
65534=nobody

As you can see from the output, our container image uses four different UIDs, shown
in table 6.1.

For you to pull a container image to your home directory, Podman needs to store at least
three different UIDs: 0, 48, and 1001. Since the Linux kernel prevents nonprivileged

Table 6.1 Unique UIDs required to run the container image

UID Name Description

0 root Owns most of the content within the container image

48 apache Owns all of the Apache content

1001 default Default user the container runs as

65634 nobody Assigned to any UID that is not mapped into the container

1116.1 How does rootless Podman work?
accounts from using more than a single UID, you are prevented from creating files
with different UIDs. You will need to take advantage of the user namespace.

USER NAMESPACE

Linux supports the concept of user namespaces, which is a mapping of UID/GIDs
from the host to different UIDs and GIDs inside the namespace. Here is how the man
page describes it:

$ man user namespaces
…

User namespaces isolate security-related identifiers and attributes—in particular, user
IDs and group IDs (see credentials(7)), the root directory, keys (see keyrings(7)),
and capabilities (see capabilities(7)). A process’s user and group IDs can be dif-
ferent inside and outside a user namespace. In particular, a process can have a nor-
mal, unprivileged user ID outside a user namespace, while at the same time having a
user ID of 0 inside the namespace; in other words, the process has full privileges for
operations inside the user namespace but is unprivileged for operations outside the
namespace.

 Since your container requires more than one UID, the Podman process first cre-
ates and enters a user namespace, where it has access to more UIDs. Podman must
also mount several filesystems to run a container. These mount commands are not
allowed outside a user namespace (along with a mount namespace). Figure 6.3 shows
the UIDs used within a user namespace.

4,294,967,296

Contents of my
/etc/subuid file

The UIDs seen by the
container that are not
mapped are treated as
overflow or nobody” users.“

Range of UIDs available
within a container

Range of UIDs on the host;
32-bit unsigned int, 0 4,294,967,296–

Figure 6.3 User namespace mapping for containers

112 CHAPTER 6 Rootless containers
When I created my system, I used the useradd program to create my account. It
assigned me 3267 as my UID and GID, defined in /etc/passwd and /etc/group. It also
allocated UID 100000-1065535—additional UIDs and GIDs for me defined in /etc/
subuid and /etc/subgid. Let’s see the content of these files:

$ cat /etc/subuid
dwalsh:100000:65536
Testuser:165536:65536
$ cat /etc/subgid
dwalsh:100000:65536
Testuser:165536:65536

You can cat these files on your system, and you’ll see something similar. On my system
I also have a testuser account; useradd also added UIDs/GIDs for that user, starting
right after my allocation.

 Within a user namespace, I have access to UIDs 3267 (my UID) as well as 100000,
100001, 100002, …, 165535, for a total of 65,537 UIDs. A root user can modify the
/etc/subuid and /etc/subgid files to increase or decrease this number.

 The useradd command starts at UID 100000 to allow you to have around 99,000
regular users plus 1,000 UIDs reserved for system services on a Linux system. The ker-
nel supports more than 4 billion UIDs (232 = 4,294,967,296). Since useradd allocates
65,537 per user, Linux can support more than 60,000 users. The 65,536 (216) number
was picked because up until the Linux kernel 2.4, this was the maximum number of
users on a Linux system. Let’s look deeper into the user namespace.

 Every process on a Linux system is in a namespace, including the init process and
systemd. These are the host namespaces. Therefore, every process is in a user name-
space. You can see the user namespace mapping for your process by examining the
/proc filesystem. The /proc/PID/uid_map and /proc/PID/gid_map contain the user
namespace mappings for each process on the OS. /proc/self/uid_map contains the
UID map of the current process:

$ cat /proc/self/uid_map
 0 0 4294967295

The mapping means UIDs starting at UID 0 are mapped to UID 0 for a range of
4,294,967,295 UIDs.

 Another way of looking at this mapping is

UID 0->0, 1->1,...3267->3267,...,4294967294->4294967294.

Basically, there is no mapping, so root is root. And my UID 3267 is mapped to 3267—
itself.

 Now let’s enter the user namespace and see what is mapped. Podman has a special
command, podman unshare, which allows you to enter a user namespace without
launching a container. It allows you to examine what is going on within the user name-
space, while still running as a regular process on your system.

1136.1 How does rootless Podman work?
 In the following command, I run podman unshare to launch the cat /proc/self/
uid_map within the default user namespace for my account:

$ podman unshare cat /proc/self/uid_map
 0 3267 1
 1 100000 65536

The mappings show that UID 0 is mapped to UID 3267 (my UID) for a range of 1.
Then UID 1 is mapped to UID 100000 for a range of 65536 UIDS.

 Any UID not mapped to the user namespace is reported within the user name-
space as the nobody user. You saw this earlier when you searched for the UIDs within
the container image:

$ podman run --user=root --rm quay.io/rhatdan/myimage -- bash -c "find /

➥ -mount -exec stat -c %u=%U {} \; | sort -un" 2>/dev/null
0=root
48=apache
1001=default
65534=nobody

If you look at / on the host, you see it is owned by the real root:

$ ls -l -ld /
dr-xr-xr-x. 18 root root 242 Sep 21 22:32 /

If you examine the same directory within the user namespace, you see it is owned by
the nobody user:

$ podman unshare ls -ld /
dr-xr-xr-x. 18 nobody nobody 242 Sep 21 22:32 /

Since the host’s UID 0 is not mapped into the user namespace, the kernel reports the
UID as the nobody user. Processes within the user namespace only have access to nobody
files based on only the other or world permissions. In the example that follows, you will
launch a Bash script that shows the user is root within the user namespace but sees
/etc/passwd as owned by the user nobody. You can read the file with the grep command
because /etc/passwd is world readable. But the touch command fails because even root
cannot modify files owned by UIDs not mapped to the user namespace:

$ podman unshare bash -c "id ; ls -l /etc/passwd; grep dwalsh

➥ /etc/passwd; touch /etc/passwd"
uid=0(root) gid=0(root) groups=0(root),65534(nobody)
-rw-r--r--. 1 nobody nobody 2942 Sep 28 07:08 /etc/passwd
dwalsh:x:3267:3267:Dan Walsh:/home/dwalsh:/bin/bash
touch: cannot touch '/etc/passwd': Permission denied

Looking at your home directory on the host versus inside of the user namespace, you
see that the same files are reported as being owned by your UID:

$ ls -ld /home/dwalsh
drwx------. 365 dwalsh dwalsh 24576 Sep 28 07:30 /home/dwalsh

114 CHAPTER 6 Rootless containers
Within the user namespace, they are owned by root:

$ podman unshare ls -ld /home/dwalsh
drwx------. 365 root root 24576 Sep 28 07:30 /home/dwalsh

By default, Podman maps your UID to root within the user namespace. Podman
defaults to root because, as I specified at the beginning of this chapter, the majority of
container images assume they start with root.

 I’ll give one last example. Create a directory and a file within the directory while in
the user namespace, and use the chown command to change the contents UIDs to 1:1:

$ podman unshare bash -c "mkdir test;touch test/testfile; chown -R 1:1 test"

Outside the user namespace, you see the test file is owned by UID 100000:

$ ls -l test
total 0
-rw-r--r--. 1 100000 100000 0 Sep 28 07:53 testfile

When you create the test file and chown it to UID/GID 1:1 within the user name-
space, the on-disk owner is actually UID 100000/100000. Remember, within the user
namespace, UID 1 is mapped to UID 100000, so when you create a UID 1 file within
the user namespace, the OS actually creates UID 100000.

 If you attempt to remove the file outside of the user namespace, you get an error:

$ rm -rf test
rm: cannot remove 'test/testfile': Permission denied

Outside the user namespace, you have access to only your UID; you don’t have access
to the additional UIDs.

NOTE In section 3.1.2, I showed how user namespace mappings can be prob-
lematic with container volumes and discussed ways you can handle them.

Reentering the user namespace, you can remove the file:

$ podman unshare rm -rf test

Hopefully, you are starting to get a feel for the user namespace; the podman unshare
command makes it easy to explore your system within the user namespace and under-
stand what is happening in rootless containers. When running a rootless container,
Podman needs more than just to run as root; it also needs access to some of the spe-
cial powers of root called Linux capabilities.

 In Linux, the root processes actually are not all equally powerful. Linux breaks
root privileges into a series of Linux capabilities. A root process with all Linux capabil-
ities is all powerful, while a root process without Linux capabilities is not allowed to
manipulate a lot of the system. For example, it cannot read non-root files, unless those
files have permission flags that allow all UIDs on the system to read (world readable).

1156.1 How does rootless Podman work?
 Let’s see how capabilities work with the user namespace:

$ man capabilities
...
DESCRIPTION
For the purpose of performing permission checks, traditional UNIX
implementations distinguish two categories of processes: privileged
processes (whose effective user ID is 0, referred to as superuser or root),
and unprivileged processes (whose effective UID is nonzero). Privileged
processes bypass all kernel permission checks, while unprivileged processes
are subject to full permission checking based on the process's credentials
(usually: effective UID, effective GID, and supplementary group list).
Starting with kernel 2.2, Linux divides the privileges traditionally
associated with superuser into distinct units, known as capabilities, which
can be independently enabled and disabled. Capabilities are a per-thread
attribute.

Linux currently has around 40 capabilities. Examples include CAP_SETUID and
CAP_SETGID, which allow processes to change their UIDs and GIDs. CAP_NET_ADMIN
allows you to manage the network stack.

 Another capability called CAP_CHOWN allows processes to change the UID/GID of
files on disk. In the preceding example, when you chowned the test directory to 1:1,
you used the CAP_CHOWN capability within the user namespace:

$ podman unshare bash -c "mkdir test;touch test/testfile; chown -R 1:1 test"

When you run within a user namespace, you are using namespaced capabilities. The
root user within your user namespace has these capabilities beyond the UIDs and GIDs
defined within the namespace. Processes with the namespaced capability, CAP_CHOWN,
are allowed to chown files owned within your user namespace to UIDs that are also
within the user namespace. If a process within a user namespace attempts to chown a file
not mapped to the user namespace, owned by the nobody user, the process is denied
permission. Likewise, a process attempting to chown a file with a UID not defined within
the user namespace also gets denied. Similarly, the CAP_SETUID capability only allows
processes to change UIDs to those defined within the user namespace.

 When Podman runs a container, it needs to mount several filesystems for the con-
tainer. In Linux, the CAP_SYS_ADMIN capability is required for mounting filesystems.
From a security point of view, mounting filesystems can be a dangerous thing to do on
Linux. The kernel adds additional controls on which types of filesystems can be
mounted and requires your user-namespaced processes to also be in a unique mount
namespace. In chapter 10, you will see how Podman limits the number of Linux capa-
bilities available to the namespaced root within a container.

MOUNT NAMESPACE

Mount namespaces allow processes within them to mount filesystems, where the
mount points are not seen by processes outside the mount namespace. Inside a mount
namespace, you can mount a tmpfs on /tmp, which blocks the processes within the

116 CHAPTER 6 Rootless containers
namespaces view of /tmp. Outside the mount namespace, processes still see the original
mount and files within /tmp, but they do not see your mount.

 In rootless containers, Podman needs to mount the content in the container
images as well as /proc, /sys, devices from /dev, and some tmpfs filesystems. For that,
Podman needs to create a mount namespace:

$ man mount namespaces
…
Mount namespaces provide isolation of the list of mount points seen by the
processes in each namespace instance. Thus, the processes in each of the
mount namespace instances see distinct single-directory hierarchies.

When you execute the podman unshare command, you are actually entering a differ-
ent mount namespace as well as a different user namespace.

 You can examine a process’s namespaces by listing the /proc/self/ns/ directory
as follows:

$ ls -l /proc/self/ns/user /proc/self/ns/mnt
lrwxrwxrwx. 1 dwalsh dwalsh 0 Sep 28 09:17 /proc/self/ns/mnt ->

➥ 'mnt:[4026531840]'
lrwxrwxrwx. 1 dwalsh dwalsh 0 Sep 28 09:17 /proc/self/ns/user ->

➥ 'user:[4026531837]'

Notice that when you enter the user namespace and mount namespace, the identifiers
change:

$ podman unshare ls -l /proc/self/ns/user /proc/self/ns/mnt
lrwxrwxrwx. 1 root root 0 Sep 28 09:17 /proc/self/ns/mnt ->

➥ 'mnt:[4026533087]'
lrwxrwxrwx. 1 root root 0 Sep 28 09:17 /proc/self/ns/user ->

➥ 'user:[4026533086]'

In the following test, you can create a file on /tmp and then attempt to bind mount it
onto /etc/shadow. Outside the namespaces, the kernel rightly prevents you from
mounting the file, as you can see in the following output:

$ echo hello > /tmp/testfile
$ mount --bind /tmp/testfile /etc/shadow
mount: /etc/shadow: must be superuser to use mount.

Once you enter the user namespace and mount namespace, your namespaced
process can successfully mount over the /etc/shadow file. You can see when
you run the following command that /etc/shadow is actually modified:
$ podman unshare bash -c "mount -o bind /tmp/testfile /etc/shadow; cat
/etc/shadow"
hello

Once you exit the unshare, everything is back to normal.

1176.1 How does rootless Podman work?
USER NAMESPACE AND MOUNT NAMESPACE

As you saw previously, when you over-mount the /etc/shadow file, you might trick some
setuid applications, like /bin/su or /bin/sudo, into giving you full root. The reason
rootless users are not allowed to mount filesystems is to prevent this type of attack.

 As you have seen, the separate mount namespace prevents you from affecting the
host’s view of the system, and anything you mount is seen only within the mount
namespace. Within the user namespace, the container already has a namespaced root.
Attacks on your mount points can be escalated to root only within the user name-
space—not real root on the host. Containerized processes cannot change their UID
(setuid) to real root or any other UID not mapped into the user namespace.

 Even with the namespaces, the Linux kernel only allows you to mount certain
filesystem types. Many filesystem types are too dangerous to allow for rootless users
because they gain access to sensitive parts of the kernel. I work with filesystem kernel
engineers to see if there are ways to lock down other filesystem types that could be
allowed to be mounted in rootless mode, without affecting the security of the system.

 As of kernel 5.13, the kernel engineers added native overlay mounts to the list of
allowed mounts. The filesystem types currently allowed are listed in table 6.2.

Table 6.2 Filesystem mounts currently supported in rootless mode

Mount type Description

bind Used heavily in rootless containers. Because rootless users are not allowed to create
devices, Podman bind mounts /dev on the host into the container. Podman also uses
bind mounts to obscure content within the host filesystem from containers. Podman
also bind mounts /dev/null over files in /proc and /sys to hide content. Volume
mounts, described in chapter 3, also use bind mounts.

binderfs Filesystem for the Android binder IPC mechanism. It is not supported by Podman.

devpts Virtual filesystem mounted at /dev/pts. It contains device files used for terminal
emulators

cgroupfs Kernel filesystem used to manipulate cgroups; rootless containers can use cgroupfs
to manipulate cgroups in cgroups v2. On v1 this is not supported. This is mounted at
/sys/fs/cgroups.

FUSE Used to mount container images using the fuse-overlayfs in rootless mode. Prior
to kernel 5.13, this was the only way to use an overlay filesystem in rootless mode.

procfs Mounted at /proc within the container. You can examine processes within the container.

mqueue Implements the POSIX message queues API. Podman mounts this filesystem at
/dev/mqueue.

overlayfs Used for mounting the image. Performs better in the fuse-overlayfs filesystem. In
certain use cases, it provides benefits over native overlay, such as NFS home directories.

ramfs Dynamically resizable, ram-based Linux filesystem, currently not used with Podman.

sysfs Mounted at /sys.

tmpfs Used to obscure kernel filesystem directories from containers in /proc and /sys.

118 CHAPTER 6 Rootless containers
6.2 Rootless Podman under the covers
Now that you have some understanding of how the user namespace and mount name-
space work and why they are needed, let’s dig deeper into what Podman does when it
runs a container. The first time you run a Podman container after logging in, Podman
reads the /etc/subuid and /etc/subgid files, looking for your username or UID.
Once Podman finds the entry, it uses the contents as well as your current UID/GID to
generate a user namespace for you. Podman then launches the podman pause process
to hold open the user and mount namespaces (figure 6.4).

Users commonly report that after they run Podman containers, they see a podman pro-
cess still running when they run the following command:

$ ps -e | grep podman
 2541 ? 00:00:00 podman pause

Subsequent running of the Podman commands joins the namespaces of the podman
pause process. Podman does this to avoid race conditions when user namespaces are
coming up and going down. The pause process remains running until you log out.
You can also execute the podman system migrate command to remove it. The pause
process’s role is keeping the user namespace alive, as all rootless containers must be
run in the same user namespace. If they were not, sharing content and other name-
spaces (like sharing the network namespace from another container) is impossible.

NOTE I often have users report that when changing the /etc/subuid and
/etc/subgid files, their containers don’t reflect the changes right away. Since
the pause process was launched with the previous user namespace settings, it

Podman launches one pause
process to hold the user and
mount namespaces for the
session

Podman

(engine)
Podman

pause

KernelContainer host User

Namespaces

Mount

The pause
process idles until
the user logs out.

Figure 6.4 Podman launches the pause process to hold open the user and mount namespaces.

1196.2 Rootless Podman under the covers
needs to be removed. Executing the podman system migrate command restarts
the pause process within the user namespace.

You can kill the pause process at any time, but Podman re-creates it on the next run.
By default each rootless user has their own user namespace, and all of their containers
run within the same user namespace. You can subdivide the user namespace and run
containers with different user namespaces, but realize, by default, you only have
65,000 UIDs to work with. Running multiple containers in different user namespaces
is much easier to do when running rootful containers. Now that the user namespace
and mount namespace are created, Podman creates storage for the container’s image
and sets up a mount point to start storing the image.

6.2.1 Pulling the image

When pulling the image (figure 6.5), Podman checks if the container image quay.io/
rhatdan/myimage exists in local container storage. If it does, Podman sets up the con-
tainer network (see section 6.2.3). However, if the container image does not exist,
Podman uses the containers/image library to pull the image. Following are the steps
Podman takes while pulling the image:

1 Resolve the IP address for the registry: quay.io.
2 Connect to the IP address via the HTTPS port (443).
3 Begin pulling the manifest, all layers, and the config of the image using the

HTTP protocol.
4 Find the multiple layers or blobs of quay.io/rhatdan/myimage.
5 Copy all layers simultaneously from the container registry to the host.

Podman contacts the container
registry for the image and
begins pulling blob layers.

Podman mounts the
storage drive, within
the user and mount
namespaces.

Each layer is
stored locally on
disk in container
storage.

Podman

(engine)
Podman

pause

KernelContainer host User
Container

storage

Container

registry

Namespaces

Mount

Figure 6.5 Podman
pulls an image off a
container registry and
stores it in the container
storage.

120 CHAPTER 6 Rootless containers
As each layer is copied to the host, Podman uses the containers/storage library to
reassemble the layers in order, creating an overlay mount point for each of them on
top of the previous one in ~/.local/share/containers/storage. If there is no previous
layer, it creates the initial layer.

 Next, containers/storage untars the contents of the layer into the new storage
layer. As the layers are untarred, containers/storage chowns the UID/GIDs of files in
the tarball into the home directory. Podman takes advantage of the user namespace
CAP_CHOWN, as explained in previous sections. Remember that Podman fails to create
content if the UID or GID specified in the TAR file was not mapped into the user
namespace.

6.2.2 Creating a container

Once the containers/storage library finishes downloading the image and creating the
storage, Podman creates a new container based on the image. Podman adds the con-
tainer to Podman’s internal database. It then tells containers/storage to create writ-
able space on disk and use the default storage driver, usually overlayfs, to mount this
space as a new container layer. The new container layer acts as the final read/write
layer and is mounted on top of the image.

NOTE Rootful containers default to using native Linux overlay mounts. In root-
less mode, kernel versions newer than 5.13 or with the rootless overlay feature
backported (RHEL 8.5 kernels or later also have this feature) use the native
overlay mounts. On older kernels, Podman uses the fuse-overlayfs executable
to create the layer. In Podman, overlay and overlay2 are the same drivers.

At this point, Podman needs to configure the network inside the network namespace.

6.2.3 Setting up the network

In rootless Podman, you cannot create full, separate networking for containers because
rootless processes are not allowed to create network devices and modify the firewall rules.
Rootless Podman uses slirp4netns (https://github.com/rootless-containers/slirp4netns)
to configure the host network and simulate a VPN for the container. Slirp4netns provides
user-mode networking (slirp) for unprivileged network namespaces. See figure 6.6.

NOTE In rootful containers, Podman uses the CNI plugins to configure net-
working devices. In rootless mode, even though the user is allowed to create
and join a network namespace, they are not allowed to create network
devices. The slirp4netns program emulates a virtual network to connect host
networking to the container networking. More advanced networking setups
require rootful containers.

Remember that in our original example, you specified the 8080:8080 port mapping
as follows:

$ podman run -d -p 8080:8080 --name myapp
registry.access.redhat.com/ubi8/httpd-24

https://github.com/rootless-containers/slirp4netns

1216.2 Rootless Podman under the covers
Podman configures the slirp4netns program to listen on the host network at port 8080
and allow the container process to bind to port 8080. The slirp4netns command cre-
ates a tap device that is injected inside the new network namespace, where the con-
tainer lives. Each packet is read back from slirp4netns and emulates a TCP/IP stack in
user space. Each connection outside the container network’s namespace is converted
in a socket operation the unprivileged user can run in the host network’s namespace.

NOTE Linux TAP devices create a user space network bridge. In user space,
TAP devices can simulate network devices inside of a network namespace.
Processes within the namespace interact with the network device. Packets
read/written from the network device are routed via the TUN/TAP device to
the user space program: slirp4netns.

Now that the storage and network are configured, Podman is ready to finally start the
container process.

6.2.4 Starting the container monitor: conmon

Podman now executes conmon (container monitor) for the container, telling it to use
its configured OCI runtime, usually crun or runc. It also executes the podman container
cleanup $CTRID command when the container exits (see figure 6.7). conmon is
described in section 4.1.

6.2.5 Launching the OCI runtime

The OCI runtime reads the OCI spec file and configures the kernel to run the con-
tainer (see figure 6.8). OCI runtimes do the following:

1 Set up the additional namespaces for the container.
2 Configure cgroups v2 (cgroups v1 is not supported for rootless containers).

Podman
(engine)

slipr4netns

Podman

pause

KernelContainer host User

Namespaces

Mount

Podman creates the network
namespace and begins
configuring the network.

Podman launches
slirp4netns to create
the userspace network
environment.

Container

storage

Network

Figure 6.6 Podman creates a network namespace and launches slirp4netns to relay network
connections.

122 CHAPTER 6 Rootless containers
Podman launches conmon to
monitor the container and
connects to slirp4netns.

conmon

Podman

(engine)

slipr4netns

Podman
pause

KernelContainer host User

Namespaces

MountContainer

storage

Network

Figure 6.7 Podman launches the container monitor, which launches the OCI runtime.

Podman

(engine)

slipr4netns

Podman

pause

KernelContainer host

Namespaces

MountContainer

storage

Network

User

c ronmon launches the OCI untime

conmon

Container

OCI

runtime

The OCI untimer
configures kernel
namespaces,
cgroups, and
security.

The OCI untime launchesr
the container PID1 with
cgroup, namespace, and
security connected to
slirp4netns and exits.

Figure 6.8 conmon launches the OCI runtime, which configures the kernel.

1236.2 Rootless Podman under the covers
3 Set up the SELinux label for running the container.
4 Load the /usr/share/containers/seccomp.json seccomp rules into the kernel.
5 Set the environment variables for the container.
6 Bind mount any volumes onto the paths in the rootfs.
7 Switch the current / to the rootfs /.
8 Fork the container process.
9 Execute any OCI hook programs, passing them the rootfs as well as the con-

tainer’s PID 1.
10 Execute the command specified by the image.
11 Exit the OCI runtime, leaving conmon to monitor the container.

And finally, conmon reports the success back to Podman (see figure 6.9).

The Podman command now exits because it ran in --detach (-d) mode.

$ podman run -d -p 8080:8080 --name myapp
registry.access.redhat.com/ubi8/httpd-24

NOTE If later you want Podman to interact with the detached container, use
the podman attach command, which connects to the conmon socket. conmon
allows Podman to interact with the container process through the STDIN,
STDOUT, and STDERR file descriptors, which conmon has been monitoring.

slipr4netns

Podman

pause

KernelContainer host

Namespaces

Mount
Container

storage

Network

User

conmon

Container

Podman exits when
container is run in
detached mode.
conmon continues to
monitor container.

Figure 6.9 Podman and OCI runtime exit, leaving the container running with conmon
monitoring it and slirp4netns providing the network.

124 CHAPTER 6 Rootless containers
6.2.6 The containerized application runs until completion

The application process can exit on its own, or you can stop the container by execut-
ing the podman stop command:

$ podman stop myapp

When the container process exits, the kernel sends a SIGCHLD to the conmon process.
In turn, conmon does the following:

1 Records the container’s exit code
2 Closes the container’s logfile
3 Closes the Podman command’s STDOUT/STDERR
4 Executes the podman container cleanup $CTRID command
5 Exits itself

The podman container cleanup command takes down the slirp4netns network and
unmounts all of the container mount points. If you specify the --rm option, the con-
tainer is entirely removed—layers are removed from containers/storage, and the con-
tainer definition is removed from the DB.

Summary
 Running rootless containers is more secure than running rootful containers.
 The user namespace gives ordinary users the ability to manipulate more than

one UID and is key to running containers.
 The mount namespace allows Podman to mount filesystems within the user

namespace.
 Podman uses slirp4netns for providing network access to containers.
 Podman launches the conmon process to monitor the container.

Part 3

Advanced topics

In part 3 of the book, you learn about advanced ways you can use Podman.
This part discusses integrating Podman into your system and how Podman can
work with other tools and orchestrators.

 In chapter 7, I introduce systemd integration. Podman was developed to fully
integrate into the system and takes advantage of the init system: systemd. Sys-
temd can easily be run within Podman containers, and this chapter shows you
how. Podman, likewise, can be run within systemd services and provides com-
mands that allow you to automatically create the service configuration files to
make this happen.

 Chapter 8 shows you how Podman works with Kubernetes. Podman is not a
container engine under Kubernetes but can work with Kubernetes YAML files.
Because Kubernetes YAML files are used to define applications that run within
Kubernetes, Podman makes it easy to move applications to and from a fully
orchestrated environment back to a single node. This feature makes it easier for
you to develop applications that eventually run under Kubernetes or debug
problems that happen under Kubernetes by running these applications locally
on your laptop. Kubernetes YAML is a great alternative to docker-compose
YAML when running a group of containers on a single node.

 Chapter 9 introduces the concept of Podman as a service, which allows tools
written to use a RESTful API to generate and manage pods and containers with
Podman. Tools like docker-compose and other Python tools built on docker-py
can interface with the Podman service, eliminating the need for Docker alto-
gether. The Podman service even allows Podman running on remote systems,
such as Windows, macOS, and Linux, to work with Linux Podman containers.

Integration with systemd
Systemd is the de facto init system for Linux. Almost every distribution of Linux
defaults to systemd as the first process launched after the kernel, which then
launches all of the services, including the login sessions for the user. Podman
embraces the power of systemd and uses it for starting up lots of its services. When
starting containerized services at boot time, Podman encourages users to use sys-
temd unit files with Podman commands. Unit files are what systemd calls its config-
uration files. Systemd supports a few different types of unit files, including service

This chapter covers
 Running systemd within the container as the

primary process

 Generating systemd unit files from existing
containers

 Socket-activated containerized services

 Using sd-notify containerized services

 The advantages of using journald as a logging
driver and events backend

 Using Podman and systemd to manage
containerized services’ life cycles on edge
devices
127

128 CHAPTER 7 Integration with systemd
files in which you can define a service, which you would want systemd to manage. A
SystemD.socket is another kind of unit file systemd uses (see section 7.6). The systemd
service unit files are a way to share your containerized service with the world. As you
see in figure 7.1, Podman’s fork/exec model grants systemd the ability to track the
processes within a containerized service.

Systemd puts all the processes within a unit file service (called a scope) into the same
cgroup hierarchy. It then uses the PID cgroup to keep track of all the processes and
uses this information to manage the service. Container engines that use client-server
methodology prevent systemd from keeping track of the containerized processes.

 Podman also takes advantage of other services, as you will see in this chapter, to
handle auto-restarting containers, auto-updating, and basic management of contain-
erized services. You will be exposed to many Podman and systemd features in this
chapter, but first you will run systemd within a Podman container.

7.1 Running systemd within a container
When containerization was first becoming popular, many evangelists taught the con-
cept of microservices. A microservice is defined as one specialized service within a con-
tainer. This single service runs as the initial PID (PID 1) within the containers and
writes its logs directly to stdout and stderr. Kubernetes assumes microservices, and
thus gathers logs from the stdin/stderr of the containers it runs. Figure 7.2 shows
Podman running microservices.

Podman executes the
OCI untime.r

The OCI runtime
fork/execs the container.

Systemd reads a
service unit file with
Podman commands.

Systemd creates the
cgroup for service. Systemd Systemd

unit file

Systemd launches the
Podman process
within the cgroup. Systemd monitors all

processes within the
service since the run
within the cgroup.

Podman

(engine)

OCI

runtime

Containerized

service

Container host
Figure 7.1 Systemd executing
a Podman container

1297.1 Running systemd within a container
An alternative idea was to run systemd as the initial PID within the container and then
allow systemd to start one or more services within the container. This school of thought
argues that containerized services are to be launched the same way they are launched
within a VM. Because service package designers (e.g., RPM and APT) develop systemd
unit files as a precise way of launching their services within the OS, container developers
should take advantage of these unit files. This approach allows running multiple ser-
vices within the same container, taking advantage of local communications paths, and
speeding up the conversion of large multiservice applications into a container and then,
over time, breaking each service into its own microservice.

 A final huge advantage of systemd in a container is that the init system handles
the cleaning up of a zombie process. In Linux, when a process exits, the kernel
sends the signal SIGCHLD to the parent process, and the parent process is supposed
to collect the exit status of the exiting process. The kernel removes the process from
the system when the parent reads the exit status. If no parent process reads the exit
status, the exited process is left in the exited status and is referred to as a zombie pro-
cess. The init system, systemd, reaps most processes on the system. In containers, the
initial process running within the container is supposed to reap these processes.
Sometimes container processes exit, and if PID1 does not reap them, they just linger
and never disappear.

NOTE The podman-run command supports an –init option, which will
launch a tiny init program just to reap the zombie processes.

Podman was designed to support both methods—microservices as well as multiser-
vice containers. Figure 7.3 shows systemd running a multiservice application within
a container.

 Podman examines the cmd option of a container and then launches systemd for
init or system. It then automatically launches the container in systemd mode.

Service

1

Container host

Service

2

Service

3

Podman launches a separate container for each service,
creating icroservices that are only connected via the network.m

Network Network

Podman Podman Podman

Figure 7.2 Podman running
three microservices

130 CHAPTER 7 Integration with systemd
The following list shows all the commands that trigger Podman to run in systemd
mode:

 /sbin/init
 /usr/sbin/init
 /usr/local/sbin/init
 /*/systemd (any path ending with the systemd command)

The registry.access.redhat.com/ubi8-init image is an example of an image intended to
run in systemd mode.

 Pull down the ubi8-init image, and examine the command:

$ podman pull ubi8-init
Resolved "ubi8-init" as an alias (/etc/containers/registries.conf.d/

➥ 000-shortnames.conf)
Trying to pull registry.access.redhat.com/ubi8-init:latest…
…
8cb83279f877a4bf3412827bf71c53188c3983194bd4663a1fc1378360844463
$ podman inspect ubi8-init --format '{{ .Config.Cmd }}'
[/sbin/init]

Systemd requires the environment to be configured in a certain way; otherwise, sys-
temd attempts to correct the environment. The next section explains how Podman
satisfies systemd requirements.

Service 3
Service 2

Service

1

Systemd reads three
unit files and launches
three services.

Podman
Podman
launches
systemd in
the container.

Container host

Service

2

Systemd

Service

3

Service 1

Figure 7.3 Podman running systemd in
a container with three services

1317.1 Running systemd within a container
7.1.1 Containerized systemd requirements

Systemd makes some assumptions about the environment it starts in, like /run and
/tmp need to have tmpfs mounted on them. When the environment is incorrect, sys-
temd attempts to correct it by mounting tmpfs on /run and /tmp. Mounting requires
CAP_SYS_ADMIN privilege within the container, which is not allowed in unprivileged
containers. Systemd then blows up.

 To fix this problem, after examining the entry point and CMD of a container image
to see if they are running systemd, Podman modifies the container environment to
match systemd expectations. When systemd sees the mounts, it skips them, allowing
systemd to run within a locked-down environment. Table 7.1 describes the require-
ments systemd needs and Podman provides to successfully run within an unprivileged
container.

7.1.2 Podman container in systemd mode

You can examine the environment of a systemd-based container with the --systemd
=always flag. First, launch a container with systemd mode enabled with the
--systemd=always flag. This option runs the container in systemd mode even when
not running systemd, making it easier to debug the environment. You can exec
systemd at this point and start it as PID1:

$ podman create –rm –name SystemD -ti –systemd=always ubi8-init sh
774a50204204768edd73f178b6afdf975cf9353e3b90af9df77273d639f60ac3

Use podman inspect to examine the StopSignal for the container; Podman set it to
37 (SIGRTMIN+3):

$ podman inspect SystemD --format '{{ .Config.StopSignal}}'
37

Table 7.1 Systemd requirements for running within a nonprivileged container

Systemd expectations Description

/run on a tmpfs Systemd requires /run to have a tmpfs mounted on it. If /run is not mounted
with a tmpfs, systemd will attempt to mount a tmpfs on /run. A default
locked-down container is prevented from mounting, so systemd will fail.

/tmp on a tmpfs Similarly to /run, systemd will attempt to mount a tmpfs on /tmp, if there is
not already one mounted there.

/var/log/journald as a
tmpfs

Systemd within the container expects to be able to write to /var/log/journald,
so Podman mounts a tmpfs to make this possible.

container environ-
ment variable

Systemd uses the fact that a container environment variable is set to
change some of its default behavior, making it run better within a container.

STOPSIGNAL=SIGRTM
IN+3

Unlike most processes on a system, systemd ignores SIGTERM and will only
cleanly exit with it when it receives the signal SIGRTMIN+3 (37).

132 CHAPTER 7 Integration with systemd
Now, start up the container, and look at the mounts for /run and /tmp; you will see
that both are mounted with a tmpfs. Finally, check to see if the container environment
variable is set:

$ podman start --attach SystemD
mount | grep -e /tmp -e /run | head -2
tmpfs on /tmp type tmpfs

➥ (rw,nosuid,nodev,relatime,context="system_u:object_r:container_file_t:s0:

➥ c37,c965",uid=3267,gid=3267,inode64)
tmpfs on /run type tmpfs

➥ (rw,nosuid,nodev,relatime,context="system_u:object_r:container_file_t:s

➥ 0:c37,c965",uid=3267,gid=3267,inode64)
printenv container
Oci

If you just run a container based on ubi8-init, you will see systemd launched:

$ podman run -ti ubi8-init
SystemD 239 (239-45.el8_4.3) running in system mode. (+PAM +AUDIT +SELINUX

➥ +IMA -APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS

➥ +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -IDN +PCRE2

➥ default-hierarchy=legacy)
Detected virtualization container-other.
Detected architecture x86-64.
Welcome to Red Hat Enterprise Linux 8.4 (Ootpa)!
Set hostname to <26bbf9077219>.
Initializing machine ID from random generator.
Failed to read AF_UNIX datagram queue length, ignoring:

➥ No such file or directory
[OK] Listening on initctl Compatibility Named Pipe.
[OK] Reached target Swap.
[OK] Listening on Journal Socket (/dev/log).
[OK] Listening on Journal Socket.
…

Here you can notice that systemd ignores SIGTERM by pressing Ctrl-C. So to stop this
container you need to go to a different terminal and execute

podman stop -l

This causes Podman to send the proper STOPSIGNAL (SIGRTMIN+3) to systemd in the
container. Systemd will shut down instantly when it receives this signal.

 Now that you understand what systemd requires, it is time to create a service sys-
temd will run. In the following section, you will build a systemd-based Apache service
that will run with systemd within the container.

7.1.3 Running an Apache service within a systemd container

In this section, you will create a Containerfile that uses ubi8-init as the base image and
then install Apache httpd. Finally, you will enable this service and set up the Apache
script we have been working with.

1337.1 Running systemd within a container
 Create a Containerfile:

$ cat << _EOF > /tmp/Containerfile
FROM ubi8-init
RUN dnf -y install httpd; dnf -y clean all
RUN systemctl enable httpd.service
_EOF

Recall that the FROM ubi8-init line will tell Podman to use the ubi8-init image as the
base image for your new image:

FROM ubi8-init
RUN dnf -y install httpd; dnf -y clean all
RUN systemctl enable httpd.service

The RUN dnf -y install httpd; dnf -y clean all line tells Podman to run a container
that executes the dnf command and install the httpd package on top of the ubi8-
init image. The second dnf command removes excess files and logs dnf created
while installing, as there is no reason to include these in the image:

FROM ubi8-init
RUN dnf -y install httpd; dnf -y clean all
RUN systemctl enable httpd.service

The final RUN systemctl enable httpd.service command tells Podman to launch
another build container and execute the systemctl command to enable the httpd
.service. When systemd runs on a container created from the newly created image,
the httpd service will be started:

FROM ubi8-init
RUN dnf -y install httpd; dnf -y clean all
RUN systemctl enable httpd.service

Now build the image using podman build, and name the image my-systemd:

$ podman build -t my-systemd /tmp
STEP 1/3: FROM ubi8-init
STEP 2/3: RUN dnf -y install httpd; dnf -y clean all
Updating Subscription Management repositories.
Unable to read consumer identity
…
COMMIT my-systemd
--> 104fa99d9a2
Successfully tagged localhost/my-systemd:latest
104fa99d9a2138404039cf15b470ab04784cdaab2226f29bd8343f8e24ec60e2

Now run a container on this systemd-based container image with a volume mounted
from the host. Since the default Apache package listens on port 80, use --p 8080:80,

134 CHAPTER 7 Integration with systemd
which, as you learned, maps port 8080 to port 80 within the container. Use an html
folder with index.html from section 3.1:

$ podman run -d --rm -p 8080:80 -v ./html:/var/www/html:Z my-systemd
71f1678084390925b7488f68ab58cd55e16009d69b717045b8ed5ef14e8599ce

You volume mounted (-v ./html/:/var/www/html:Z) in the ./html directory, with
the goodbye world index.html file:

$ podman run -d --rm -p 8080:80 -v ./html:/var/www/html:Z my-systemd

Launch a web browser to check whether the containerized service is working (as seen
in figure 7.4):

$ web-browser localhost:8080

Notice that you did not need to specially handle the HTTPD server processes when
designing the image; your container is running HTTPD the same way a VM would. If
you need to enable another service within the image, you can easily do this by install-
ing the package and enabling its unit file.

 To see one of the shortcomings of this setup, you can run the podman logs command:

$ podman logs 71f1678084

There is no output. Since systemd is running at the PID1 of the container, it is not
writing any output to the logs. You need to exec into the container and use journalctl
or read the httpd logs in /var/log/httpd/error_log to see if there were any problems.
Now that you have seen how to use systemd within a container, it is time to see how
you can use systemd and Podman to take advantage of advanced systemd features.

7.2 Journald for logging and events
The systemd journal (journald) is the modern logging system on Linux. It is a system
service that collects and stores logging data. A big advantage of using journald is that
records are permanently stored, and log rotation is built in. Podman uses journald by
default for storing its logging data.

Figure 7.4 Web browser window showing system-based container image running
your content

1357.2 Journald for logging and events
7.2.1 Log driver

Podman defaults to using journald as the log driver on systems running with systemd
as the init system. If you run Podman in a container without systemd running, it falls
back to using the file driver. One consideration when picking a log driver is whether
the log data persists when the container is removed.

 A second concern is how large the log file grows. The log records all stdout and
stderr within the container. Containers running for a very long time can create a lot
of log content. Only the journald driver has log rotation built into it, provided by sys-
temd. If you use the k8s-file driver there is a risk your system could run out of space.
Table 7.2 shows the available log drivers and whether the log data persists and the sys-
tem supports log rotation.

While I recommend you use journald for the log driver, some rootless users are not
allowed to use journald, depending on their system configuration. In other cases, like
running Podman within a container, journald is not available.

 You can see the default log driver on your system by using the following command:

$ podman info --format '{{ .Host.LogDriver }}'
k8s-file

For some reason, the system settings on your host were set to log to k8s-file. It is simple
to override the default log driver for your system using containers.conf. Create a
log_driver.conf file in the home directory, $HOME/.config/containers/containers
.conf.d, with the log_driver option set:

$ mkdir -p $HOME/.config/containers/containers.conf.d
$ cat > $HOME/.config/containers/containers.conf.d/log_driver.conf << _EOF
[containers]
log_driver="journald"
_EOF
$ podman info --format '{{ .Host.LogDriver }}'
journald

Great. Next, you will see the benefits of the journald log driver by launching a con-
tainer with the --rm option to remove the container when it exits:

$ podman run --rm --name test2 ubi8 echo "Check if logs persist"
Check if logs persist

Table 7.2 Log driver options

Library Description
Persist logs after
container removal

Log
rotation

Journald Use systemd journal to store logging information ✔ ✔
k8s-file Store logging data in Kubernetes format flat file ✘ ✘
None Do not store any logging information ✘ ✘

136 CHAPTER 7 Integration with systemd
Check that the journal keeps a record of the container being launched:

$ journalctl -b | grep "Check if logs persist"
Nov 10 06:19:54 fedora conmon[657915]: Check if logs persist

If you had launched with the k8s_file option, Podman would have removed the log
file when the container was removed. No log entry would be left behind. Like logs,
Podman supports using the systemd journal to store events.

7.2.2 Events

Podman events record different steps in the container life cycle; for example, you can
see the start event of the last container you ran:

$ podman events --filter event=start --since 1h
2021-11-10 06:35:06.780429582 -0500 EST container start

➥ ecf04c4802bb120f34533560fbfc19ab023bcce63d48945ab0e8ff06cc6eeda1
…

Examine the default events logger with the Podman info command:

$ podman info --format '{{ .Host.EventLogger }}'
journald

You can modify the events logger with the events_logger option in containers.conf
similarly to how you did for the log_driver. Table 7.3 shows the available events log-
ging options.

If your system uses the file event logger, the events backend file is stored on
$XDG_RUNTIME_DIR for rootless users, which is on a tmpfs by default. The events
backend file grows continuously, until you reboot the system when using the file
driver. This could cause failures to run containers or the system to run out of space,
since the events backend does not roll over unless you are using journald. Also,
when you reboot, the events log is lost. Switching to journald preserves the events
and handles rotation of the events log. I recommend you keep the log driver and
the events driver the same values, either as journald, a flat file, or none, if you don’t
need the events and logs.

Table 7.3 Events logger options

Library Description
Persist log data

on reboot
Log rotation

Journald The systemd journal will record all events. ✔ ✔
File Store events in a file, usually on /run. ✘ ✘
None Do not store any events information. ✘ ✘

1377.3 Starting containers at boot
 You have examined using systemd within Podman as well as journald to manage
log files and events. Now you will look at how to set up your system to automatically
run a container when the system comes up using systemd.

7.3 Starting containers at boot
As you learned in chapter 1, Podman does not run as a daemon, meaning you can-
not rely on a daemon to automatically start containers at boot time. Often you will
need to run containerized services via systemd. Systemd can be configured to install,
run, and manage containerized applications. Many applications are shipped as con-
tainer images and will include systemd service unit files for launching. There are
many features provided by systemd to improve the way containerized services run on
your system.

7.3.1 Restarting containers

Podman relies on systemd to start containerized services by launching Podman within
systemd unit files. The podman run command allows you to choose whether to restart a
container (--restart) if it is not stopped by a user—for example, if the container
crashes or the system reboots. Table 7.4 shows the restart policies available to Podman.

 One simple way systemd helps is by starting containers with a restart policy of
always. If you set the always option and the system reboots, Podman uses two sys-
temd services to automatically restart containers marked with --restart=always.
One service handles rootful containers, and the other handles all rootless containers
on the system.

When your system boots up, systemd runs the following Podman command to start
any containers with restart policy set to always:

/usr/bin/podman start --all --filter restart-policy=always

NOTE Podman ships with two systemd service files used to restart services—
one for rootful and one for rootless:

/usr/lib/systemd/system/podman-restart.service
/usr/lib/systemd/user/podman-restart.service

Table 7.4 Restart policy

Option Description Restart on boot

no Do not restart containers on exit. ✘
on-failure[:max_retries] Restart containers when they exit with a non-

zero exit code, retrying indefinitely or until the
optional max_retries count is hit.

✘

always or
unless-stopped

Restart containers when they exit, regardless
of status, retrying indefinitely.

✔

138 CHAPTER 7 Integration with systemd
The --restart=always works great, but it requires you to create a container
on the system and will restart containers even if they fail. Systemd was
designed to run services; you will see in the next section that you can easily
create a service unit file with Podman to run your containerized service.

7.3.2 Podman containers as systemd services

As you have seen, systemd uses unit files to specify how to run a service. Figure 7.5
shows how systemd works with Podman to launch a container.

In figure 7.5, I point out that systemd is able to monitor all the processes running within
the systemd unit file. This allows it to easily start and stop the processes. The conmon
process is also running within the systemd service monitoring the container processes.
conmon still notices when the container exits, saves its exit code, and cleanly shuts
down the container environment. Systemd does not know about the container; it
only knows about the processes running within the unit file, including the container
processes.

 Systemd unit files have many different ways to run and launch processes, and Podman
has many different options for running containers. Configuring the unit files can be very
complex. Many users have written unit files to run containers, but several have stumbled
over problems when doing so. The most common problem is running the podman run
--detach command within a unit file. When the Podman command detaches and exits,

Systemd creates a cgroup
for a service.

Systemd launches
the Podman process
within the cgroup.

Podman starts
conmon to monitor
the container.
conmon executes
the OCI untime.r

The OCI untimer
fork/execs the
container.

Systemd reads a
service unit file with
Podman commands.

Systemd

unit file

Systemd monitors all
processes within the
service since the run
within the cgroup.

conmon monitors the
processes in the
container.

conmon

Podman
(engine)

OCI
runtime

Container host

Containerized

service

Systemd

Figure 7.5 Podman fork/exec
architecture is ideal for systemd
service management.

1397.3 Starting containers at boot
systemd assumes the service is complete and takes it down, even though conmon and
the container are still running. One of the most common questions I hear from users
is the following: “How should I run my container within a systemd unit file?”

 Podman has a feature to generate unit files with the best defaults. First, re-create
the container from myimage, and then use podman systemd generate to create a sys-
temd service unit file to manage your container.

 Create a container based on the image you created in chapter 2:

$ podman create -p 8080:8080 --name myapp quay.io/rhatdan/myimage
…
8879112805e976b4b6d97c07c9426bdde22ee4ffc7ba4daa59965ae25aa08331

Now use Podman to generate a unit file off of this container:

$ mkdir -p $HOME/.config/systemd/user
$ podman generate systemd myapp > $HOME/.config/systemd/user/myapp.service

Notice in the myapp.service script that Podman created an ExecStart field. On ser-
vice start, systemd will execute the ExecStart command, which simply starts the con-
tainer you created:

ExecStart=/usr/bin/podman start 8879112805…

On service stop, systemd executes the ExecStop command added to the unit file:

ExecStop=/usr/bin/podman stop -t 10 8879112805…
Let's take a look at the generated service file:
$ cat $HOME/.config/systemd/user/myapp.service
container-

8879112805e976b4b6d97c07c9426bdde22ee4ffc7ba4daa59965ae25aa08331.service
autogenerated by Podman 3.4.1
Wed Nov 10 08:23:06 EST 2021
[Unit]
Description=Podman container-8879112805...service
Documentation=man:podman-generate-SystemD(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=/run/user/3267/containers
[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman start 8879112805...
ExecStop=/usr/bin/podman stop -t 10 8879112805...
ExecStopPost=/usr/bin/podman stop -t 10 8879112805...
PIDFile=/run/user/3267/containers/overlay-

containers/8879112805.../userdata/conmon.pid
Type=forking
[Install]
WantedBy=multi-user.target default.target

140 CHAPTER 7 Integration with systemd
To make this all work, you need to tell systemd to reload its database, so it will notice
changes in the unit files:

$ systemctl --user daemon-reload

Start the service with the following command:

$ systemctl --user start myapp

Check to see that the service is running:

$ systemctl --user status myapp
• myapp.service - Podman container-8879112805....service
 Loaded: loaded (/home/dwalsh/.config/SystemD/user/myapp.service;

➥ disabled; vendor preset: disabled)
 Active: active (running) since Thu 2021-11-11 07:19:08 EST; 3min 9s ago
…
$ podman ps
CONTAINER ID IMAGE COMMAND

➥ CREATED STATUS PORTS NAMES
8879112805e9 quay.io/rhatdan/myimage:latest /usr/bin/run-http...

➥ 23 hours ago Up 5 minutes ago 0.0.0.0:8080->8080/tcp myapp

Now you can run the web browser against localhost port 8080 to see it is running (see
figure 7.6):

$ web-browser localhost:8080

To shut down the service, execute

$ systemctl --user stop myapp

The ability to generate systemd service files offers a lot of flexibility to users, and it
intentionally blurs the difference between a container and any other program or ser-
vice on the host.

 One problem with this unit file is that it’s specific to the container you created. You
need to first create the container and generate specific service files. You are not able to
hand the unit file to another user and have them run your service on their machine.

Figure 7.6 Web browser window connecting myapp

1417.3 Starting containers at boot
Luckily, Podman has support for creating a more portable systemd unit file: podman
generate systemd --new.

7.3.3 Distributing systemd unit files to manage Podman containers

As shown previously, the podman generate systemd command generated a unit file,
which started and stopped an existing container. The --new flag instructs Podman to
generate units that run, stop, and remove containers. Try it out in the same container:

$ podman generate systemd --new myapp > $HOME/.config/systemd/user/

➥ myapp-new.service

Notice that with the --new option, Podman creates a slightly different unit file. Exam-
ine the following ExecStart command, and you will see the original podman create
-p 8080:8080 --name myapp quay.io/rhatdan/myimage command you used to create
the container has been changed to use the podman run command. Also notice that
Podman added additional options to make running under systemd easier (--cidfile
=%t/%n.ctr-id --cgroups=no-conmon --rm --sdnotify=conmon -d --replace).

 Podman now adds the ExecStop command (/usr/bin/podman stop --ignore
--cidfile=%t/%n.ctr-id), which tells systemd how to stop the container when some-
one executes systemctl stop or the system shuts down.

 Finally, Podman adds an ExecStopPost command (/usr/bin/podman rm -f --ignore
--cidfile=%t/%n.ctr-idType=notify), which systemd executes once the ExecStop
command completes. The Podman command removes the container from the system:

$ cat $HOME/.config/systemd/user/myapp-new.service
container-8879112805....service
autogenerated by Podman 3.4.1
Thu Nov 11 07:40:34 EST 2021
[Unit]
Description=Podman container-8879112805...service
Documentation=man:podman-generate-SystemD(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=%t/containers
[Service]
Environment=PODMAN_SystemD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStartPre=/bin/rm -f %t/%n.ctr-id
ExecStart=/usr/bin/podman run --cidfile=%t/%n.ctr-id --cgroups=no-conmon –

➥ rm --sdnotify=conmon -d --replace -p 8080:8080 --name myapp

➥ quay.io/rhatdan/myimage
ExecStop=/usr/bin/podman stop --ignore --cidfile=%t/%n.ctr-id
ExecStopPost=/usr/bin/podman rm -f --ignore --cidfile=%t/%n.ctr-idType=notify
NotifyAccess=all
[Install]
WantedBy=multi-user.target default.target

142 CHAPTER 7 Integration with systemd
You can remove the container and the image from your system, and when you tell
systemctl to start the service, Podman will pull the image and create a new container.
This means the myapp-new.service unit file can be shared with a different user, and
when they run the service, Podman will likewise pull the image and run the container
on their systems, without them ever creating the container in the first place. Table 7.5
shows the different commands added to the unit file based on whether you used the
--new flag.

Once you have your containerized service running on many machines, you need to
think about maintaining it. Podman has a way to do this without human intervention:
auto-update.

7.3.4 Automatically updating Podman containers

In chapter 2, we talked about container images aging like stinky cheese. When the
container image gets updated with new software or vulnerability fixes, you need to
reach out to these machines, pull the updated images, and re-create the containerized
services. It is much less labor intensive when machines manage their own updates.

 Imagine you configure a service to run on a container image on hundreds of
nodes. A few months later, you add new features to the application in the image or,
more importantly, a new CVE is found. Now you need to update the image and then
recreate the service on all of the nodes.

 Podman automates this process with auto-update; each node watches for new
images to appear in a container registry. When the image shows up, the node pulls
down the image and re-creates the container. No human interaction is involved.

 Podman auto-update enables you to use Podman in edge use cases, update work-
loads once they are connected to the network, and roll back failures to a known good
state. In addition, running containers is essential for implementing edge computing
in remote data centers or on internet-of-things (IoT) devices. Auto-updates enable
you to use Podman in edge use cases, update workloads once they are connected to
the network, and reduce maintenance costs.

Table 7.5 Differences between unit files

Option Commands

With
--new

ExecStart=/usr/bin/podman run ...--cidfile=%t/%n.ctr-id --cgroups=no-

➥ conmon --rm --sdnotify=conmon -d --replace -p 8080:8080 --name

➥ myapp quay.io/rhatdan/myimage

ExecStop=/usr/bin/podman stop --ignore --cidfile=%t/%n.ctr-id
ExecStopPost=/usr/bin/podman rm -f --ignore --cidfile=%t/%n

➥ .ctr-idType=notify

Without
--new

ExecStart=/usr/bin/podman start 8879112805...
ExecStop=/usr/bin/podman stop -t 10 8879112805...
ExecStopPost=/usr/bin/podman stop -t 10 8879112805...

1437.3 Starting containers at boot
 To implement this behavior, Podman requires containers to have a special label,
--label "io.containers.autoupdate=registry", and the container must be run in
a systemd unit generated by podman generate systemd --new. Table 7.6 describes the
auto-update modes available.

First, stop the systemd service if it is running, and remove the existing myapp container:

$ systemctl --user stop myapp-new
$ podman rm myapp --force -t 0

Re-create the myapp container with the special label "io.containers.autoup-
date=registry":

$ podman create --label "io.containers.autoupdate=registry" -p 8080:8080

➥ --name myapp quay.io/rhatdan/myimage
397ad15601868eb6fd77fe0b67136869cde9e0ffad90ee5095a19de5bb4b999e

Re-create the systemd unit file with the --new option:

$ podman generate systemd myapp --new > $HOME/.config/systemd/user/

➥ myapp-new.service

Tell systemd the unit file changed by executing daemon-reload, and start the service:

$ systemctl --user daemon-reload
$ systemctl --user start myapp-new

The myapp-new service is now ready to be automatically updated. When you execute
the podman auto-update command, Podman examines running containers for the
io.containers.autoupdate label set to image. For each container with that label,
Podman reaches out to the container registry and checks if the image has changed
since the container was created. If the image has changed, Podman restarts the corre-
sponding systemd unit. Recall that on a systemd restart, the following steps happen:

1 Systemd stops the service by executing the podman stop command:

ExecStop=/usr/bin/podman stop --ignore --cidfile=%t/%n.ctr-id

Table 7.6 Auto-update modes

io.containers.autoupdate Description

registry Podman connects to the container registry and checks if a different
image than the one used to create the container is available; if
there is one, Podman will update the container.

local Podman connects to the container registry but compares local
images to the one the container was created with; if they are
different, Podman updates the container.

144 CHAPTER 7 Integration with systemd
2 Systemd executes the ExecStopPost script. Once the container stops, this script
removes the container with podman rm:

ExecStopPost=/usr/bin/podman rm -f --ignore --cidfile=%t/

➥ %n.ctr-idType=notify

3 Systemd restarts the services with the podman run command, including the
--label "io.containers.autoupdate=registry" option:

ExecStart=/usr/bin/podman run --cidfile=%t/%n.ctr-id --cgroups=no-conmon --rm

➥ --sdnotify=conmon -d --replace --label

➥ io.containers.autoupdate=registry -p 8080:8080

➥ --name myapp quay.io/rhatdan/myimage

The podman run command in the third step will reach out to the registry and pull
down the updated container image and re-create the containerized application on it.
The container, its environment, and all dependencies are restarted.

 You can test this by changing your image, pushing it to a registry, and then running
the podman auto-update command as follows:

$ podman exec -i myapp bash -c 'cat > /var/www/html/index.html' << _EOF
<html>
 <head>
 </head>
 <body>
 <h1>Welcome to the new Hello World<h1>
 </body>
</html>
_EOF

Now commit the image as myimage-new, and push it to the registry with the original
name: myimage. Finally, remove the image from the local store to simulate that the
image was never on your system:

$ podman commit myapp quay.io/rhatdan/myimage-new
…
226ec055eef82ac185c53a26de9e98da4e6403640e72c7461a711edcbcaa2422
$ podman push quay.io/rhatdan/myimage-new quay.io/rhatdan/myimage
…
$ podman rmi quay.io/rhatdan/myimage-new

Once the new image is at the registry, and you have removed it from local storage, you
can run podman auto-update, which notices the new image and restarts the service.
This triggers Podman to pull the new image and re-create the containerized service:

$ podman auto-update
Trying to pull quay.io/rhatdan/myimage…
Getting image source signatures
Copying blob ecfb9899f4ce done
Copying config 37e5619f4a done
Writing manifest to image destination

1457.4 Running containers in notify unit files
Storing signatures
UNIT CONTAINER IMAGE

➥ POLICY UPDATED
myapp-new.service c8888d1319c4 (myapp) quay.io/rhatdan/myimage registry

➥ true

Your application has been updated to the latest version of the image.
 Some notable podman auto-update options include the following:

 --dry-run—This option is useful to see if any containers need to be updated,
without actually updating them.

 --roll-back—This option tells Podman to roll back to the previous image if the
update fails, as covered in the next section.

SYSTEMD TIMERS TRIGGER PODMAN UPDATES

Podman ships with two auto-update systemd timer units and two auto-update service
units—one each for rootful containers and rootless containers. The timer units trig-
gered by systemd once per day are the following:

 /usr/lib/systemd/system/podman-auto-update.timer
 /usr/lib/systemd/user/podman-auto-update.timer

The timer units tell systemd to execute the appropriate auto-update service unit file:

 /usr/lib/systemd/system/podman-auto-update.service
 /usr/lib/systemd/user/podman-auto-update.service

With this feature, systemd will launch Podman, which looks for containers with the
"io.containers.autoupdate=registry" label, like you created last section. Once
Podman finds a container with the label, it checks if the container’s image has been
updated on the registry. If the image has changed, Podman starts the update process.
This means you can run your systems unattended, and they are updated within 24
hours with the newest version of the container image every time you push an updated
image to a registry. If you share the unit file you generated with others, then they also
get the auto-updates.

 A big concern with auto-update is what happens if the update is broken. In that
case, you will have hundreds of nodes updated to a broken service. Systemd has a fea-
ture called sd-notify, which allows a service to say its initialization is complete and it
is ready to be used as a service.

NOTE Some of this section is based on previously written blogs copied and
rewritten from the “How to use auto-updates and rollbacks in Podman” blog
(http://mng.bz/neDK), written by myself and coworkers Valentin Rothberg
and Preethi Thomas.

7.4 Running containers in notify unit files
Unit file services can specify that they wait to start until other services are up and run-
ning. For example, you can have a website that relies on a database to be running

http://mng.bz/neDK

146 CHAPTER 7 Integration with systemd
before the web service accepts connections. Systemd usually considers a service started
after it launches the primary process of the service. However, many services take time
to initialize and can’t accept connections right away. The database in the previous
example might take minutes before it is ready for the web service to start receiving
connections.

 Systemd defines a special service type called notify (or sd-notify) that allows the
service process to notify systemd when it is actually fully up and running. Systemd
starts the web service only when systemd is notified that the database is ready.

 Systemd tells a service that it needs to be notified that the service is ready by pass-
ing the NOTIFY_SOCKET environment variable pointing to the systemd socket to be
notified. By default, systemd listens on the /run/SystemD/notify socket. When Pod-
man executes within a NOTIFY unit file, it needs to volume mount the socket into the
container and pass down the environment variable into the container (figure 7.7).

If the service does not notify systemd within the specified time, systemd will mark the
service as failed. Podman auto-update checks if the new service is fully up and run-
ning, and if the check fails, Podman can automatically roll back to the previous con-
tainer—again, without human intervention.

The notify unit file
tells systemd to
listen on the socket
for a ready message
from the service.

Systemd launches
Podman with the
NOTIFY_SOCKET
environment
variable set.

Systemd

notifies the

unit file.

Podman launches the
container with the
NOTIFY_SOCKET
environment and
socket volume
mounted in.

Systemd

The container process
notifies systemd when
it is ready to accept
connections.

Podman

/run/systemd/notify

Containerized

service

Container host

Figure 7.7 Containerized sd_notify systemd service launched by
Podman

1477.6 Socket-activated Podman containers
7.5 Rolling back failed containers after update
If your defined service supports sd-notify and writes to the notify socket within the
time limit, the podman auto-update command will succeed. However, if it fails, Pod-
man will remove the new container and retag the original image. Finally, it will create
the container on the previous image, and your service will come back up in the previ-
ous state. You could even set up your system-based containerized service to notify your
logging system that the update failed. The rollback gives you time to figure out what
went wrong and ship a new image, triggering the auto-update again. As you can see,
systemd can be used as the container orchestrator of a single system.

 You have now discovered a few nice features systemd provides for running con-
tainers without human intervention. One additional feature Podman can take advan-
tage of is socket activation, which allows you to specify a container within a unit file
that will not be running until the first packet comes to its socket.

7.6 Socket-activated Podman containers
When systemd was first introduced, it was lauded for speeding up the boot of a system.
Before systemd, each service started sequentially, and services that relied on different
services to be run needed to wait. To speed up the boot and get better with resource
allocation, systemd uses socket-activated services. When you set up a socket-activated ser-
vice, systemd sets up listening IP or UNIX domain sockets on behalf of your service,
without starting the service (figure 7.8).

When a connection to the socket arrives, systemd activates the service and hands the
connection to it. Afterwards, the service handles connections. The service can at some
point in the future idle itself by exiting. If a new connection comes in, systemd accepts
the new connection and starts the service again.

Systemd reads the
service unit file for
the containerized
service.

If the service is socket activated, systemd
will start listening on the specified port,
and only start the service when the port
is connected to.

Systemd

unit file

Listen on

the network

Systemd

Container host Figure 7.8 Systemd listening
on a socket for a socket-
activated container

148 CHAPTER 7 Integration with systemd
 Socket activation allows systemd to indicate that a service started instantly, without
actually starting or waiting for the service to start, speeding up the boot process.
Socket activation allows systemd to run more services on the system, since many ser-
vices are idle and not using system resources. Basically, your services can be stopped
and only run when they are actually needed and not sit idle, waiting for another
connection. With containerized services, the main process of the service is Podman,
and it needs to pass the connection down to the service running within the container
(figure 7.9).

Shut down the myapp.service, and create the myapp.socket:

$ systemctl --user stop myapp.service
$ cat > $HOME/.config/systemd/user/myapp.socket <<_EOF
[Unit]
Description=myapp socket service
PartOf=myapp.service
[Socket]
ListenStream=127.0.0.1:8080

A connection from a
remote process to
the socket arrives.

Systemd
accepts the
connection.

Systemd

Systemd launches
Podman, passing
down the
connection.

Podman launches
the container,
passing down the
connection. Containerized

service

The containerized
service handles
the connection and
optionally exits.

Container host

Podman

Listen on

the network

Figure 7.9 When a connection to the socket systemd is listening on
arrives, systemd activates Podman, which launches the container,
passing the socket down to the container.

1497.6 Socket-activated Podman containers
[Install]
WantedBy=sockets.target
_EOF

Now, enable the socket, and make sure no containers are running:

$ systemctl --user enable --now myapp.socket
$ podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

➥ PORTS NAMES

Connect a web browser to the socket (see figure 7.10):

$ web-browser localhost:8080

Notice that podman.socket started the podman.service, which created a container to
handle the connection:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
69c34949d632 quay.io/rhatdan/myimage:latest /usr/bin/run-http...

➥ 2 minutes ago Up 2 minutes ago 0.0.0.0:8080->8080/tcp myapp

Now if you stop the service, not only will the container be stopped, but it will be
removed:

$ systemctl --user stop myapp.service
$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

➥ PORTS NAMES

Socket activation allows you to run the service only when needed, saving system
resources. Later, you can take the service down, knowing that if a new connection
comes in, systemd and Podman will handle it.

Figure 7.10 A web browser window connecting to the ubi8/httpd-24 container running in
Podman with updated Hello World HTML.

150 CHAPTER 7 Integration with systemd
Summary
 Podman enables running systemd as the primary process within a container.
 Journald is recommended for Podman logs and events.
 Systemd can be used to start and restart containers at boot time.
 Podman auto-update is used to manage the life cycle of a container and its image.
 Socket-activated systemd services can be used with Podman-based containers.
 The podman generate systemd command makes it easy to generate systemd ser-

vice files for running your containers.

Working with Kubernetes
Some readers come to this chapter expecting to see how Podman can be used as
the container engine for Kubernetes, similar to how it has used Docker in the past.
While there have been some efforts to use Podman as the container engine for
Podman (the kind project supports this), I do not generally recommend that you
use Podman for this purpose. I recommend you use CRI-O described in appendix
A, since it was built specifically to work with Kubernetes and shares the underlying

This chapter covers
 Creating Kubernetes YAML files from existing

Podman pods and containers

 Creating Podman containers and pods from a
Kubernetes YAML file

 Shutting down and removing pods and containers
using the Kubernetes YAML file

 Building container images on the fly before
launching pods and containers from a
Kubernetes YAML file

 Running Podman inside of a Podman and
Kubernetes container
151

152 CHAPTER 8 Working with Kubernetes
libraries of Podman. Kubernetes is now discouraging users from using the Docker
backend and encouraging them to use a CRI-O or containerd as a backend.

 This chapter covers using the same structured language with both Kubernetes and
Podman as well as how to run Podman containers inside a Kubernetes cluster. You
have learned how to create microservices as containers and pods from the command
line using Podman. Often software developers and packagers need to take their appli-
cations and run them on multiple machines. You might want to take your web applica-
tion and add a database backend. If the web application becomes popular, you will
need to run multiple instances on different nodes. Wiring different microservices
together and orchestrating all of them together is not something Podman does. This
is where Kubernetes comes in.

 In this chapter, you will learn about running these same containers and pods in
Kubernetes. The kubernetes.io website says, “Kubernetes, also known as K8s, is an
open-source system for automating deployment, scaling, and management of contain-
erized applications.” I look at Kubernetes as the tool for running containers on multi-
ple machines at the same time—a way to orchestrate large clusters of containerized
microservices.

 One problem you may encounter is that most container development happens
with tools like Podman and Docker, which use fairly simple command-line interfaces
to create containers and pods. But Kubernetes uses a declarative language written in
YAML files.

 I will not be diving deep into how Kubernetes works in this chapter because there
are already many in-depth books on the topic, including Kubernetes in Action by Marko
Lukša (Manning, 2020) and Kubernetes for Developers by William Denniss (Manning,
2020), that describe all the features of Kubernetes. But I will be describing the devel-
oper language of Kubernetes: the Kubernetes YAML file.

NOTE The yaml.org website first describes YAML as the “YAML Ain’t Markup
Language.” It further elaborates, “YAML is a human-friendly data serialization
language for all programming languages.”

Translating command-line options to a structured language like YAML presents a bar-
rier for developers moving from containers on a single node to containers running at
scale. How do you specify volumes, the image to be used, the security constraints, the
network ports, and so on? In section 8.2, you will learn to use Podman to take your
locally created pods and containers to generate Kubernetes YAML files from them.

 After writing and deploying your application in a pod using Kubernetes YAML
files, users are likely to find problems with your application running within Kubernetes.
Testing the application at scale can be difficult, and often you just want to run the
application locally on your system, without having to set up and configure a Kuberne-
tes cluster. In section 8.3, you will learn about podman play kube. This Podman com-
mand allows you to run the Kubernetes YAML file locally, without Kubernetes, so you
can test and debug problems.

1538.2 Generating Kubernetes YAML files with Podman
 The final part of this chapter will cover running Podman within containers, includ-
ing running it within a Kubernetes cluster. Administrators, developers, and quality
engineers need to test containers within their continuous integration (CI) systems
using Podman. Often these CI systems are built on Kubernetes clusters. Section 8.4
teaches you different ways to run the Podman command within containers launched
by Podman and Kubernetes.

8.1 Kubernetes YAML files
The Kubernetes YAML file is the object used to launch pods and containers within
Kubernetes. In chapter 5, you learned the configuration files used by Podman are
written using TOML, which is very similar to YAML. Both configuration languages are
attempting to be human readable. YAML relies on indenting substanzas, which is dif-
ferent syntax than you learned with TOML. You can go to the yaml.org website to
learn more about the language.

 If you are going to work a lot with Kubernetes YAML files, it is nice to have a text edi-
tor or IDE, like Visual Studio and VS Code, that can at least understand YAML; it is even
better if it knows the Kubernetes language. Kubernetes YAML is descriptive and power-
ful. It allows you to model the desired state of your application in a declarative language.
As stated in the introduction to this chapter, writing these YAML files is a barrier for
developers to get through when moving their containers from a local system to Kuberne-
tes. Most developers just web search an existing Kubernetes YAML file and then begin
cutting and pasting their container command, image, and options into the YAML file.
While this works, it can lead to unintended consequences—and often unnecessary work.

 Scott McCarty, product manager of Podman, tossed out an idea: “What I would
really like to do is help users get from Podman to orchestrating their containers with
Kubernetes.” This led the Podman developers to create a new Podman command:
podman generate kube.

8.2 Generating Kubernetes YAML files with Podman
Imagine you want to take the containers you generated in the previous chapters and
run them within Kubernetes. You need to write the Kubernetes YAML file to make this
happen. Where should you start?

 In this chapter, you will learn a new command: podman generate kube. This Pod-
man command captures the description of local pods and containers and then trans-
lates them into Kubernetes YAML. This helps you transition to a more sophisticated
orchestration environment like Kubernetes. The generated Kubernetes YAML file can
then be used by Kubernetes commands to launch your pods and containers into a
Kubernetes cluster.

 You can re-create the containers or pods locally using Podman on the command
line with the same Podman run, create, and stop commands you have learned in the
previous chapters. Using the following commands, re-create the container you have
been working with.

http://yaml.org

154 CHAPTER 8 Working with Kubernetes
 First, remove the container if it exists using podman rm. You will introduce a new
flag, --ignore, which tells the podman rm command not to report errors when the con-
tainer does not exist. Then, re-create the container from the command line:

$ podman rm -f --ignore myapp
$ podman create -p 8080:8080 --name myapp quay.io/rhatdan/myimage
9305822e6089ca28a1fdbb005c12f57f4a26be273fe5d49a1908eadbcfdcb7d4

Now, use the command podman generate kube myapp to generate the Kubernetes
YAML file. Podman inspects the existing container or pod in its database for all of the
fields required to run the container in Kubernetes and then populates them in the
Kubernetes YAML file:

$ podman generate kube myapp > myapp.yaml

Figure 8.1 shows the result of a podman generate kube command.

Examine parts of the YAML file. Understand that Kubernetes works with pods, even
though you created a container, podman generate kube, that creates a pod specifica-
tion. Podman names the pod myapp-pod and the container myapp within the specifi-
cation, based on the name of the original container:

$ cat myapp.yaml.
Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-4.1
apiVersion: v1
kind: Pod
metadata:

creationTimestamp: "2021-11-22T11:57:12Z"
labels:

app: myapppod
name: myapp_pod

spec:
containers:
-args:
-/usr/bin/run-httpd
image: quay.io/rhatdan/myimage:latest
name: myapp
ports:
-containerPort: 8080

hostPort: 8080
securityContext:

capabilities:
drop:
-CAP_MKNOD
-CAP_NET_RAW
-CAP_AUDIT_WRITE

Kubernetes works with Pods,
so Podman generates a Pod
specification.

Podman names the pod
myapp_pod based on the
name of the container.

Ports mappings to expose
the container to the internet

Security constraint
modifications for your
container

The name of the image to
be used by Kubemetes

Figure 8.1 Shows the generated myapp.yaml file from the myapp container

1558.2 Generating Kubernetes YAML files with Podman
metadata:
 creationTimestamp: "2021-11-22T11:57:12Z"
 labels:
 app: myapppod
 name: myapp-pod
spec:
 containers:
 - args:
 - /usr/bin/run-httpd
 image: quay.io/rhatdan/myimage:latest
 name: myapp

Notice, in the containers section, that the image name, quay.io/rhatdan/myimage:
latest, is recorded, which tells Kubernetes where to download the image for the con-
tainer from. It also tells Kubernetes the command arguments to start the app within
the container, /usr/bin/run-httpd:

spec:
 containers:
 - args:
 - /usr/bin/run-httpd
 image: quay.io/rhatdan/myimage:latest

In the same container section, you see that the Podman ports are recorded, -p 8080:
8080 spec:

 containers:
 - args:
 - /usr/bin/run-httpd
 image: quay.io/rhatdan/myimage:latest
 name: myapp
 ports:
 - containerPort: 8080
 hostPort: 8080

Finally, at the end of the containers section, you see securityContext, which records
that Podman, by default, drops three additional Linux capabilities: CAP_MKNOD,
CAP_NET_RAW, and CAP_AUDIT_WRITE:

 securityContext:
 capabilities:
 drop:
 - CAP_MKNOD
 - CAP_NET_RAW
 - CAP_AUDIT_WRITE

Most containers run fine without these Linux capabilities, but the OCI specification
enables these three by default. This tells Kubernetes that this pod can run more
securely without these capabilities, and Kubernetes will drop them. You can find out
more about Linux capabilities by running the command man capabilities.

156 CHAPTER 8 Working with Kubernetes
 At this point, you can just run this Kubernetes YAML file in any Kubernetes cluster,
usually running a command like the following:

kubectl create -f myapp.yml

Often you will have to add sophistication and orchestration to the YAML file and
leverage advanced functions of Kubernetes. For example, the generated Kubernetes
YAML file will only generate a single instance of your application. If you want to run
multiple versions of your applications on different nodes, you could add a replicas
option to your YAML file, as seen in figure 8.2.

The replicas flag tells Kubernetes that the myapp.yaml file wants to have two myapp
pods running on two different nodes at all times. Replicas and other advanced Kuber-
netes features are out of the scope of Podman. The podman play kube command ignores
these fields.

 Some notable podman generate kube options include the following:

 -f, --filename—This writes output to the specified path.
 -s, --service—This generates YAML for a Kubernetes service object.

Save the output of this file and use kubectl create -f to import
it into Kubernetes.
#
Created with podman-4.1
apiVersion: v1
kind: Pod
metadata:

creationTimestamp: "2021-11-22T11:57:12Z"
labels:

app: myapppod
name: myapp_pod

spec:
containers:
- args:

- /usr/bin/run-httpd
image: quay.io/rhatdan/myimage:latest
name: myapp
ports:
- containerPort: 8080

hostPort: 8080
securityContext:

capabilities:
drop:
- CAP_MKNOD
- CAP_NET_RAW
- CAP_AUDIT_WRITE

replicas: 2
Tells Kubernetes to run two pods
with this template

Figure 8.2 The modified Kubernetes YAML file ready to run two replicas

1578.3 Generating Podman pods and containers from Kubernetes YAML
Now that you have generated a Kubernetes YAML file, it’d be nice to be able to reverse
the process. If you had a Kubernetes YAML file, you may want to generate Podman
pods and containers.

8.3 Generating Podman pods and containers
from Kubernetes YAML
Imagine you get a Kubernetes YAML file and want to examine it running locally. You
could set up a local Kubernetes cluster, but it would be nice if you could just play the
pods locally. Podman provides a command for doing this. The podman play kube com-
mand creates pods, containers, and volumes based on structured Kubernetes YAML
files. The created pods and containers are automatically started. To test this, you can
simply remove the container you created and then run the generated myapp.yaml file
with the following commands:

$ podman rm -f --ignore myapp
$ podman play kube myapp.yaml
Pod:
b70aedd8105a6915428928a2b33fd7ecede632298088ea25d9db74ba9b16201e
Container:
a4d78fdfa5d8f751aafb06f3782e36a3aaf5b3804ca57694385de2ea1e400fe6

Kubernetes only runs pods with containers; it does not run just containers by them-
selves. When the podman play kube command reads the YAML, file it launches the pod
along with the container. Notice in figure 8.3 that the play command created a Pod
with your container along with the infra containers.

myapp_pod

conmon conmon

myapp

cgroups

Infra

container

Volume->./html:/var/www/html

Linux namespaces

NET->"8080:8080", , , , andPID UTS IPC USER

Figure 8.3 The myapp-pod
running with the myapp container
and the infra container

158 CHAPTER 8 Working with Kubernetes
The podman generate kube command creates the pod named myapp-pod, based on
the name within the myapp.yaml file. The names of the containers are generated by
appending the name of the pod to the name of the container: myapp-pod-myapp. If
the YAML file defines additional containers, they need to be labeled similarly:

$ cat myapp.yaml
…
 name: myapp-pod
spec:
 containers:
 - args:
 name: myapp

You can display the pods running on your system with the podman pod ps command.
Add the --ctr-names option to also list the containers running within the pod:

$ podman pod ps --ctr-names
POD ID NAME STATUS CREATED INFRA ID NAMES
b70aedd8105a myapp-pod Running 1 day ago b7a276c62c1d

➥ myapp-pod-myapp,b70aedd8105a-infra

Now examine the two containers running with the podman ps command, using the fol-
lowing command:

$ podman ps
CONTAINER ID IMAGE COMMAND CREATED

➥ STATUS PORTS NAMES
b7a276c62c1d k8s.gcr.io/pause:3.5

➥ 3 minutes ago Up 3 minutes ago 0.0.0.0:8080->8080/tcp b70aedd8105a-infra
a4d78fdfa5d8 quay.io/rhatdan/myimage:latest /usr/bin/run-http...

➥ 3 minutes ago Up 3 minutes ago 0.0.0.0:8080->8080/tcp myapp-pod-myapp

Shut down the Pod and container with the podman pod stop command:

$ podman pod stop myapp-pod
b70aedd8105a6915428928a2b33fd7ecede632298088ea25d9db74ba9b16201e

podman play kube can execute much more complex YAML files, including with multi-
ple pods, volumes, and containers defined. In the previous simple example, you can
just shut down the pod with the podman pod stop command, but when podman play
kube generates multiple unique pods, it gets a little more complex to shut them down.

8.3.1 Shutting down pods and containers based
on a Kubernetes YAML file

Although you can stop each pod started by podman play kube, sometimes you don’t
only want to stop the pods and containers but actually remove them from the system.
The podman play kube --down command tears down the pods that were created by a

1598.3 Generating Podman pods and containers from Kubernetes YAML
previous run of play kube. The pods are stopped and then removed. Any volumes cre-
ated are left intact. Shut down the myapp.yaml pod created in the previous example:

$ podman play kube myapp.yaml --down
Pods stopped:
B70aedd8105a6915428928a2b33fd7ecede632298088ea25d9db74ba9b16201e
Pods removed:
b70aedd8105a6915428928a2b33fd7ecede632298088ea25d9db74ba9b16201e

Notice that Podman not only stopped the pod but also removed it. You can verify the
pod is gone with the podman pod ps command:

$ podman pod ps
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS

This leaves you back in a state where you can run podman play kube again, which will
create fresh pods and containers:

$ podman play kube myapp.yaml
Pod:
302b1d2c0048a49ea32c2e6ffa0e0549af199ab2bc32de285eef5da628efe28c
Container:
b9f080dc6e13b4a4c37fa66a9b727dbeb2af30f0c3824044aba8a46eebfe15c5

This mimics what happens with Kubernetes running pods and containers. Kubernetes
always creates pods and containers fresh and tears them down when it completes. The
ability to generate all of the pods and containers from the YAML file and then remove
them with the --down flag is similar to the workflow of docker-compose. Podman has
the big advantage of using the same YAML file for running the pods and containers as
in a multinode, orchestrated environment with Kubernetes. One other feature
docker-compose has is the ability to build the images defined within the YAML file,
which the Podman developers also added to podman play kube.

8.3.2 Building images using Podman and Kubernetes YAML files

Users who were using podman play kube as a replacement for docker-compose requested
Podman to add a feature to build images, rather than always pull them from a container
registry. While Kubernetes does not support such a feature, Podman developers decided
to add the --build flag to podman play kube. Because podman build can process Con-
tainerfiles or Dockerfiles, enhancing podman play kube was simple.

 The idea is to create a containerized application via a container image that is pro-
duced on demand. Normal Kubernetes workflow requires developers to build the
image using podman build and push it to a container registry using podman push, as
you learned in chapter 2. Then you can retrieve the image from the registry using
podman play kube. The podman play kube --build option allows it to execute podman
build internally and generate the image on demand, rather than forcing you to use a
container registry.

160 CHAPTER 8 Working with Kubernetes
NOTE The --build option is not available with the remote Podman client, so
you can’t use it on Mac or Windows.

In this example, you are going to re-create the Containerfile used in section 6.1.3:

$ cat > ./Containerfile << _EOF
FROM ubi8-init
RUN dnf -y install httpd; dnf -y clean all
RUN systemctl enable httpd.service
_EOF

Recall that this Containerfile builds a container image with systemd running as the
init system and the HTTPD service running and listening on port 80. First, remove all
pods and containers:

$ podman pod rm --all --force
$ podman rm --all --force

Now rebuild the my-systemd image:

$ podman build -t mysystemd.
STEP 1/3: FROM ubi8-init
STEP 2/3: RUN dnf -y install httpd; dnf -y clean all
Updating Subscription Management repositories.
Unable to read consumer identity
…
Successfully tagged localhost/mysystemd:latest
bb1634ce1457f2eb70f84af33599d211eae64cb5f951e40e91481b6e58b747bf

Now re-create a container on the image with the ./html directory (using a code exam-
ple from section 3.1) mounted into the container:

$ podman create --rm -p 8080:80 --name myapp -v ./html:/var/www/

➥ html:Z mysystemd
fec6de5716ac246613723a4cc26407005e0bc315affdc62b56883bd94acd795e

Now generate the Kubernetes YAML file using podman generate kube:

$ podman generate kube myapp > myapp2.yaml

Notice that this time Podman generated the YAML file with a volumes section for html:

$ cat myapp2.yaml
…
spec:
 containers:
 - image: localhost/mysystemd:latest
 …
 volumeMounts:
 - mountPath: /var/www/html
 name: home-dwalsh-podman-html-host-0

1618.3 Generating Podman pods and containers from Kubernetes YAML
 volumes:
 - hostPath:
 path: /home/dwalsh/podman/html
 type: Directory
 name: home-dwalsh-podman-html-host-0

Get back to a fresh environment by removing all of the pods with the podman pod rm
--all --force command. Remove all containers and images using the podman rm and
podman rmi commands, so you can start with a clean slate:

$ podman pod rm --all --force
$ podman rm --all --force
fec6de5716ac246613723a4cc26407005e0bc315affdc62b56883bd94acd795e
$ podman rmi mysystemd
Untagged: localhost/mysystemd:latest
Deleted: bb1634ce1457f2eb70f84af33599d211eae64cb5f951e40e91481b6e58b747bf
Deleted: 70e0c1a7580089420267b5928210ad59fdd555603e647b462159ea94f97946f9

The podman play kube --build command requires subdirectories matching the image
names to exist for images to be built. Podman examines the Kubernetes YAML file for
all images and then looks for the matching subdirectory. Each directory is treated as a
context directory and should contain a Containerfile or a Dockerfile. Podman then
executes podman build on each subdirectory. Since the YAML file needs the mysys-
temd image, you need to create a mysystemd directory and place the Containerfile in
the directory:

$ mkdir mysystemd
$ mv Containerfile mysystemd/

You can now run podman play kube --build, and it will rebuild the container image
and launch the Pod and containers for your application:

$ podman play kube myapp2.yaml --build
STEP 1/3: FROM ubi8-init
STEP 2/3: RUN dnf -y install httpd; dnf -y clean all
Updating Subscription Management repositories.
…
--> 305bb9b8da1
Successfully tagged localhost/mysystemd:latest
305bb9b8da12db682b0eae93ad492e632d2ba43e03f6a6b68467d7429a8a2664
a container exists with the same name ("myapp") as the pod in your YAML file;

➥ changing podname to myapp-pod
Pod:
30739dd554acfeab66a9767301127bab0fe994461686f45a3a89b137c3954840
Container:
ce633ac4e7a1e4d08e0428a8401fcfc4ac75fbcca4be07bc167add6093a44afa

Podman rebuilt the mysystemd image based on the mysystemd/Containerfile and then
generated the myapp-pod pod and the myapp container for your application, without
even reaching out to a container registry.

162 CHAPTER 8 Working with Kubernetes
 You can share this YAML file and the mysystemd directory with other users, and
they can build and launch your application all with Podman. Remember, though, if
they wanted to launch it inside of Kubernetes, you need to push the built image to a
container registry, and then edit the YAML file to point the image to the registry
image. Now that you have been exposed to the integration of Podman with Kuberne-
tes, I want to explore one last idea: running Podman within Podman and Kubernetes
containers.

8.4 Running Podman within a container
Running Podman within a container, or within a Kubernetes cluster, is a common
problem. Users want to be able to test container images and tools within CI/CD sys-
tems using containers. Often, they want to build container images with podman build.
Sometimes, they just want to test a newer version of Podman than has been released
within their distribution.

 One challenge with Podman is that it can be configured in so many different ways
that users were looking for best practices for running Podman within a container.
Because of this I, along with some of my colleagues, decided to create a container
image, quay.io/podman/stable, which makes it easier to run Podman within a con-
tainer. As you understand, Podman can run in two different modes: rootful and root-
less. By default, Podman containers start as the container root within their user
namespace. To help you understand running Podman within a container, you will first
experiment with running Podman within Podman. Table 8.1 describes the different
ways you can run a container within a container and the capabilities required to allow
the internal Podman to execute a container.

Table 8.1 Requirements for running Podman within a container

Host
mode

Container
 mode

Capabilities Explanation

Rootful Rootful CAP_SYS_ADMIN Has full access to the host user’s
namespace

Rootful Rootless CAP_SETUID
CAP_SETGID

Runs in a separate user’s namespace
based on /etc/subuid and /etc/subgid
inside the container

Rootless Rootful Namespaced
CAP_SYS_ADMIN

Has full access to the user’s user
namespace

Rootless Rootless Namespaced CAP_SETUID,
CAP_SETGID

Runs in a separate user namespace
based on /etc/subuid and /etc/subgid
inside the container. The user name-
space must be a subset of the user
namespace in which you are running the
Podman command.

1638.4 Running Podman within a container
8.4.1 Running Podman within a Podman container

In the first example, you will run a rootful Podman within a rootless container. You
need to use the --privileged command because, to run successfully, Podman needs
to be able to mount filesystems. When Podman is run as root, mounting requires the
CAP_SYS_ADMIN capability, which is given by the --privileged option. Try it out by
executing the following command:

$ podman run --privileged quay.io/podman/stable podman version
Trying to pull quay.io/podman/stable:latest…
Getting image source signatures
Copying blob b1f89b7294d7 done
…
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18.2
Built: Mon May 30 12:03:28 2022
OS/Arch: linux/amd64

The quay.io/podman/stable image is also configured to run a rootless Podman within
a Podman container. You can activate this behavior by adding running as the Podman
user with the --user podman option. In this mode, Podman within the container
needs CAP_SETUID and CAP_SETGID to set up the user namespace. Luckily, Podman
gives this access to containers by default:

$ podman run --user podman quay.io/podman/stable podman version

If you really want to lock the container down, you can drop all capabilities other than
CAP_SETUID and CAP_SETGID, using the --cap-drop=all --cap-add CAP_SETUID,CAP_
SETGID options:

$ podman run --cap-drop=all --cap-add CAP_SETUID,CAP_SETGID

➥ --user podman quay.io/podman/stable podman version
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18.2
Built: Mon May 30 12:03:28 2022
OS/Arch: linux/amd64

These examples, which show how you can run Podman within a Podman container,
can also easily be done with Docker running Podman within a container.

 Note that Docker runs with a seccomp filter, which blocks the unshare and mount
system calls. You need to either disable seccomp filtering in Docker—

docker run –security-opt seccomp=unconfined …

—or run Docker with Podman’s seccomp filters:

docker run –security-opt seccomp=/usr/share/containers/seccomp.json … .

164 CHAPTER 8 Working with Kubernetes
In this section, you learned about Podman integration with Kubernetes. In the next
section, you will learn how to configure Podman to run within a Kubernetes pod or
container.

8.4.2 Running Podman within a Kubernetes pod

A common use case for CI/CD systems is using Podman to run containers within
Kubernetes. As you learned, running Podman within a container requires either
CAP_SYS_ADMIN for rootful containers or CAP_SETUID and CAP_SETGID to run in root-
less mode. Understand that Podman containers almost always require more than one
UID to run, especially when running podman build. Lots of Podman problems have
been raised by users of Kubernetes attempting to run Podman in a locked-down
Kubernetes container, with only one UID and without Linux capabilities. These con-
tainers are the default for OpenShift and lots of the cloud-based Kubernetes environ-
ments. Running a container engine like Podman in environments without some
Linux capabilities and access to more than one UID is impossible.

 The equivalent version of running rootful Podman using the quay.io/podman/stable
image within a privileged Kubernetes container can be launched with this Kuberne-
tes YAML file:

apiVersion: v1
kind: Pod
metadata:
 name: podman-priv
spec:
 containers:
 - name: priv
 image: quay.io/podman/stable
 args:
 - podman
 - version
 securityContext:
 privileged: true

Similarly, you can launch a rootless Podman within a Kubernetes container by using
the following YAML file. Note that you specify the runAsUser: 1000 as the UID, not
the podman user. Kubernetes does not support translating usernames within contain-
ers to UIDs:

apiVersion: v1
kind: Pod
metadata:
 name: podman-rootless
spec:
 containers:
 - name: rootless
 image: quay.io/podman/stable
 args:
 - podman
 - version

165Summary
 securityContext:
 capabilities:
 add:
 - "SETUID"
 - "SETGID"
 runAsUser: 1000

NOTE See the following articles written by me along with my colleague,
Urvashi Mohnani, that offer many more examples on running Podman
within containers:

 “How to Use Podman inside of a Container” (http://mng.bz/vXDM)
 “How to Use Podman inside of Kubernetes” (http://mng.bz/49EV)

As you can see, it is fairly easy to run Podman containers within Kubernetes, as long as
you understand the Podman requirements. There is ongoing work within the Kuber-
netes community to take advantage of user namespaces, making it easier to run Pod-
man containers within Kubernetes containers and making them more secure.

Summary
 The podman generate kube command easily allows you to move locally running

pods and containers into a Kubernetes YAML file suitable for running within a
Kubernetes cluster.

 These YAML files can also be used to generate local pods and containers via the
podman play kube command.

 The --down option allows podman play kube to shut down all pods and contain-
ers launched by a previous podman play kube command.

 The --build option allows podman play kube to generate the container image
defined within the Kubernetes YAML file based on a Containerfile/Dockerfile,
eliminating the need to push the image to a container registry.

 podman play kube is a suitable replacement for docker-compose because it shares
the same YAML format as Kubernetes.

 Running Podman within Podman and Kubernetes containers is possible as
long as you understand the Podman requirements for running in a locked-
down environment.

http://mng.bz/vXDM
http://mng.bz/49EV

Podman as a service
In previous chapters, you learned about the Podman command line. The prob-
lem with this is sometimes you want to work with containers from a remote sys-
tem. Similarly, you might want to write code in a scripting language to interact
with containers. Docker, being written as a client-server application, supports a
popular remote API, which led to the creation of libraries written in Python and
JavaScript to access the daemon. Docker-py is a popular Python library used to
interact with the Docker daemon.

This chapter covers
 Running Podman as a service

 Podman service support for two REST APIs

 Python libraries podman-py and docker-py for
managing Podman containers

 Support for docker-compose

 Remote command-line communication with the
Podman service

 Managing SSH communications with remote
Podman instances
166

1679.1 Introducing the Podman service
 Many CI/CD, GUI, and remote management systems have been built to manage
Docker containers. Code editors like Visual Studio even have built-in plug-ins that talk
directly to the Docker API. Advanced tools like docker-compose led to a new pro-
gramming language that is used to orchestrate multiple containers on a host by inter-
acting with the Docker daemon.

 Podman provides similar features and can be run as a service. Podman supports
running the Podman service in rootless as well as rootful mode. In this chapter, you
will learn about the service and how to interact with it. You will write a simple pro-
gram in Python that uses the docker-py and newer podman-py libraries to interact
with the Podman service. You will learn how to set up remote Docker-based tools,
including docker-compose, to actually use the Podman service, with no Docker dae-
mon available.

NOTE The Podman service is only supported on Linux. Because the Podman
service launches Linux containers, it only runs on Linux machines. Windows
and Mac versions of Podman communicate with the Podman service over the
REST API to launch containers. For more information on Podman on Mac,
see appendix E, and for Windows, see appendix F.

The Podman command has a --remote option that allows you to interact with the
Podman service, either on the local machine or, most often, on a remote machine.
You will learn to set up the Podman connections to make interacting with remote ser-
vices easy and secure. But first you need to know how to enable the Podman service.

9.1 Introducing the Podman service
The Podman project supports a REST (or RESTful) API. The podman system service
command creates a listening service that answers API calls for Podman. The service can
be run in rootful or rootless mode. This command offers an optional argument to
specify a URI on which the Podman service will listen. For example, the unix:///tmp/
podman.sock URI tells Podman to listen on the /tmp/podman.sock UNIX domain
socket. The tcp:localhost:10000 URI socket tells Podman to listen on TCP socket, port
10000. By default, Podman listens on a UNIX domain socket under the /run directory
(table 9.1).

NOTE If you are not familiar with REST API or remote APIs in general, I rec-
ommend that you read “What is a REST API?” by Red Hat: https://www.red-
hat.com/en/topics/api/what-is-a-rest-api.

Podman running as a service in this case is different from having a centralized dae-
mon, like Docker does, in multiple ways. The biggest difference is that the Podman
command can run without the service and interacts with containers and images cre-
ated by the service. Other container tools can interact with the storage and containers
without going through the service. The service also exits when there are no connections

https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api

168 CHAPTER 9 Podman as a service
to it. You could even run multiple services at the same time on the same datastore
(although I would not recommend this). The Docker daemon forces all interaction
with containers and images to go through the daemon. Table 9.1 shows the default
locations where the Podman service listens for incoming connections.

Although the Podman service can be set up to run on a TCP socket as well, I cau-
tion you to be very careful because there is no authorization or additional security
built into the service to prevent hackers from gaining access. The service relies on
the SSH service to gain remote access to the Podman service, and this approach is
recommended.

 The Podman service was designed to run as an on-demand service, exiting 5 sec-
onds after the last connection. This time limit avoids a long-running daemon that
uses system resources even when the service is not being used. While the Podman
service could launch a separate process for each connection, this could become a
bottleneck. Try this out by running the following command; after 5 seconds you
will see the command exit. If you had active connections to the service, it would
continue to run:

$ podman system service

You can specify the timeout for this exit in seconds with the --time option. Specifying
--time 0 causes the podman system service command to run until you stop it. Most
users never interact directly with the Podman system service to activate the service but
rely on systemd services to manage it.

9.1.1 Systemd services

Podman provides multiple systemd unit files for running Podman as a service.
Because Podman was not designed as a daemon, and the developers did not want to
always have a long-running daemon, they decided to take advantage of systemd socket
activation. This allows the Podman service to be launched as an on-demand service.
Figure 9.1 shows how systemd listens on the Podman socket and then launches the
Podman service when it receives a connection.

 The Podman package provides two podman.socket unit files: one for rootful Pod-
man and the other for rootless Podman. Table 9.2 defines the location of the systemd
socket files to be used in rootful and rootless mode.

Table 9.1 Default locations for the podman.socket

Mode Default location

Rootful unix:///run/podman/podman.sock

Rootless unix://$XDG_RUNTIME_DIR/podman/podman.sock
example unix:///run/user/1000/podman/podman.sock)

1699.1 Introducing the Podman service
These two socket activation services tell systemd to listen on the default UNIX domain
socket listed in table 9.1. When a process connects to the socket, systemd launches the
matching service, which runs the podman system service command. Systemd then
hands the socket off to the service. After the Podman service completes the API
request, it waits for another connection. If no connection happens for 5 seconds, Pod-
man exits, freeing up the resources it was using. If a new connection comes in, sys-
temd repeats the process and launches a new instance of the Podman service.

Table 9.2 Podman socket unit files

Mode Systemd socket file

Rootful /usr/lib/systemd/system/podman.socket

Rootless /usr/lib/systemd/user/podman.socket

4. The Podman service
receieves the REST API
and generates a
container handing all
communication with
the remote process.

Podman

service

podman.service

unit file

podman.socket

unit file

Systemd

5. Five seconds after the
remote process and
container complete, the
Podman service exits.

Container

Container host

1. The Podman socket
unit file tells systemd to
listen on the socket for
incoming connections.

2. The remote process
connects to the socket,
executing the REST API
to create a container.3. Systemd reads the

podman.service unit file and
starts the Podman service.

Remote

process

$XDG_RUNTIME_DIR/podman/podman.sock

Figure 9.1 Podman service running under systemd

170 CHAPTER 9 Podman as a service
 In the rest of this chapter, you will be interacting with the Podman service, so you
need to start running it. You can enable and start the Podman socket on your machine
using the --user option, which tells systemd to enable the user service (or rootless
mode service):

$ systemctl --user enable podman.socket
Created symlink

➥ /home/dwalsh/.config/systemd/user/sockets.target.wants/podman.socket ?

➥ /usr/lib/systemd/user/podman.socket.
$ systemctl --user start podman.socket

You can see that the podman.sock has been created in your XDG_RUNTIME_DIR:

$ ls $XDG_RUNTIME_DIR/podman/podman.sock
/run/user/3267/podman/podman.sock

At this point, the systemd is listening on the socket, and there is no Podman process
running. When a packet comes into the service, systemd launches the Podman service
process to handle the connection.

 To try out the service, you can run the following curl command to probe for the
version on the Podman service:

$ curl -s --unix-socket $XDG_RUNTIME_DIR/podman/podman.sock

➥ http://d/v1.0.0/libpod/version | jq
{
 "Platform": {
 "Name": "linux/amd64/fedora-35"
 },
 "Components": [
 {
 "Name": "Podman Engine",
 "Version": "4.0.0-dev",
 "Details": {
 "APIVersion": "4.0.0-dev",
 "Arch": "amd64",
 "BuildTime": "2022-01-04T13:42:14-05:00",
 "Experimental": "false",
 "GitCommit": "66ffbc845d1f0fd5c29611ac3f09daa24749dc1e-dirty",
 "GoVersion": "go1.16.12",
 "KernelVersion": "5.15.10-200.fc35.x86_64",
 "MinAPIVersion": "3.1.0",
 "Os": "linux"
 }
 },
 {
 "Name": "Conmon",
 "Version": "conmon version 2.0.30, commit: ",
 "Details": {
 "Package": "conmon-2.0.30-2.fc35.x86_64"
 }
 },

1719.2 Podman-supported APIs
 {
 "Name": "OCI Runtime (crun)",
 "Version": "crun version 1.4\ncommit:
3daded072ef008ef0840e8eccb0b52a7efbd165d\nspec: 1.0.0\n+SYSTEMD

➥ +SELINUX +APPARMOR +CAP +SECCOMP +EBPF +CRIU +YAJL",
 "Details": {
 "Package": "crun-1.4-1.fc35.x86_64"
 }
 }
],
 "Version": "4.0.0-dev",
 "ApiVersion": "1.40",
 "MinAPIVersion": "1.24",
 "GitCommit": "66ffbc845d1f0fd5c29611ac3f09daa24749dc1e-dirty",
 "GoVersion": "go1.16.12",
 "Os": "linux",
 "Arch": "amd64",
 "KernelVersion": "5.15.10-200.fc35.x86_64",
 "BuildTime": "2022-01-04T13:42:14-05:00"
}

Now that you have the service running, it’s time to investigate the APIs.

9.2 Podman-supported APIs
The Podman service provides two APIs over the same socket (table 9.1). The compati-
bility API targets the latest released version of the Docker API, implementing all end-
points, except the Swarm APIs. The Podman team treats any problem concerning a
difference with the Docker API as a bug. If the API works against the Docker daemon,
it must work against the Podman service.

 The Podman Libpod API provides support for Podman’s unique features, such as
pods. While it would be great for all projects to support the native Libpod API, it takes
time to transition, and it may be impossible for older, no-longer-maintained projects
based on the Docker API.

 I recommend that all new users of Podman work with the Libpod API, but if you
are using legacy code or want to develop code that will work with both Podman and
Docker, then you should use the compatibility API. Table 9.3 lists the two different
REST APIs provided by Podman.

The easiest way to interact with the remote API is via the curl command. Examine
the list of images available with the curl command and the jq command to pretty-print

Table 9.3 Podman-supported APIs

Mode Description Documentation

Compatibility A compatibility layer offering sup-
port for the Docker v1.40 API

https://docs.docker.com/engine/api/

Libpod A Podman-native Libpod layer https://docs.podman.io/en/latest/_static/api.html

https://docs.docker.com/engine/api/
https://docs.podman.io/en/latest/_static/api.html

172 CHAPTER 9 Podman as a service
the JSON code. Also notice the libpod field in the URL. This field tells Podman to
use its native API.

$ curl -s --unix-socket $XDG_RUNTIME_DIR/podman/podman.sock

➥ http://d/v1.0.0/libpod/images/json | jq
[
 {
 "Id":
"Sha256:2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae",
 "ParentId": "",
 "RepoTags": [
 "quay.io/rhatdan/myimage:latest"
],
…
 }
]

You can also run the Docker API by eliminating the libpod field. For this command,
you get the same output because the APIs have the same output:

$ curl -s --unix-socket $XDG_RUNTIME_DIR/podman/podman.sock

➥ http://d/v1.0.0/images/json | jq
[
 {
 "Id":
"Sha256:2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae",
 "ParentId": "",
 "RepoTags": [
 "quay.io/rhatdan/myimage:latest"
],
…
 }
]

An example in which the APIs differ is listing pods, since Docker does not support the
concept of a pod, the compat API does not have interfaces for it.

 First, create a pod for the test by running the following command:

$ podman pod create --name mypod
116291543d5691c597132ec73a428f29f2c1f71a65fdfbaca17eb5440a5d47f6

Now, use the Libpod pods or JSON API to see JSON related to the pod you just created:

$ curl -s --unix-socket $XDG_RUNTIME_DIR/podman/podman.sock

➥ http://d/v1.0.0/libpod/pods/json | jq
[
 {
 "Cgroup": "user.slice",
 “Containers": [
 {
 "Id": "8eeceeb4fd6aa3897e05b5361b5c27c6e98bc29707484f95994f49437536599e",
 "Names": "4b10a21c5b8c-infra",

Listing 9.1 The default output when connecting curl to the Podman socket

The image you have
been working on

1739.3 Python libraries for interacting with Podman
 "Status": "running"
 }
],
 "Created": "2022-01-05T06:51:52.604528462-05:00",
 "Id": "4b10a21c5b8c2b4f8a598de1eace7b94918d813055891276c2472df856a7fbc1",
 "InfraId":

➥ "8eeceeb4fd6aa3897e05b5361b5c27c6e98bc29707484f95994f49437536599e",
 "Name": "test_pod",
 "Namespace": "",
 “Networks": [],
 "Status": "Running",
 "Labels": {}
 },
 {
 "Cgroup": "user.slice",
 "Containers": [
 {
 "Id": "7a7405a31917da7bde01a6000809e0ee12f40b69fc76963d87a8ae254b34d8c7",
 "Names": "e10eb9303705-infra",
 "Status": "configured"
 }
],
 "Created": "2022-01-05T09:18:01.648324833-05:00",
 "Id": "e10eb930370592834fc168a7460fabe9b3e0e20a54b48a2bf3236cecd75f8138",
 "InfraId":

➥ "7a7405a31917da7bde01a6000809e0ee12f40b69fc76963d87a8ae254b34d8c7",
 "Name": "mypod",
 "Namespace": "",
 "Networks": [],
 "Status": "Created",
 "Labels": {}
 }
]

If you try the same query against the Docker API endpoint, it fails with a Not Found
error.

$ curl -s --unix-socket $XDG_RUNTIME_DIR/podman/podman.sock

➥ http://d/v1.0.0/pods/json
Not Found

This is because the Docker API and Docker itself do not understand pods. While you
can do a lot of testing with the API directly with tools like curl, it is better to have
higher-level languages to interact with the API, such as Python.

9.3 Python libraries for interacting with Podman
Python is arguably the most popular scripting language on Linux platforms. Almost
every Linux system has Python installed by default. Just like the API, there are two very
similar Python libraries available: the docker-py library, which works with the compati-
bility library, and podman-py, which supports the newer Libpod API. This section uses
some Python commands and might require a limited knowledge of Python but is easy
enough for you to follow along if you have limited experience.

174 CHAPTER 9 Podman as a service
9.3.1 Using docker-py with the Podman API

The most popular Python package for interacting with containers is docker-py
(https://github.com/docker/docker-py). Docker-py is a Python bindings library used
originally to communicate with the Docker daemon. It can also communicate with the
Podman compatibility service. The Docker-py library allows you to run the same con-
tainers as the Podman command, except you can do it from Python.

 Thousands of tools and examples built on docker-py exist and are running in pro-
duction. These tools have been used for CI/CD systems as well as GUIs, management
tools, and debugging tools. For these commands, you can use the Podman compat
API, which works fine with docker-py.

 Usually, you can install docker-py with apt-get or dnf install. It is also available
via PyPI. Consult the install commands for your Linux platform. On RPM-based sys-
tems, the package is called python-docker.

 On my Red Hat-based system, I install it using the following dnf command:

$ sudo dnf install -y python-docker

After docker-py is installed, you can start using it to interact with the Podman ser-
vice. Imagine you want to build a Python script to interact with the Podman service
to list the currently available images. Notice I have to reset the DockerClient URL
to point at the Podman socket. You might have to modify the location of pod-
man.sock on your system:

$ cat > images.py << _EOF
import docker
client=docker.DockerClient(base_url='unix:/run/user/1000/podman/podman.sock')
print(client.images.list(all=True))
_EOF

Run the images.py script, and see the images installed on your box:

$ python images.py
[<Image: 'quay.io/rhatdan/myimage:latest'>, <Image: 'k8s.gcr.io/pause:3.5'>]

It is inconvenient to have to fully specify the path to the Podman socket inside the
Python script, but luckily, Docker tools support a special environment variable called
DOCKER_HOST. You can set DOCKER_HOST to point at the socket that implements the
Docker API.

 First, set the DOCKER_HOST environment variable to point at podman.sock:

$ export DOCKER_HOST=unix://$XDG_RUNTIME_DIR/podman/podman.sock

Now, change the script to use the docker.from_env() function:

$ cat > images.py << _EOF
import docker

https://github.com/docker/docker-py

1759.3 Python libraries for interacting with Podman
client=docker.from_env()
print(client.images.list(all=True))
_EOF

Run the new script, and you see that it uses the DOCKER_HOST environment variable to
discover the Podman service socket:

$ python images.py
[<Image: 'quay.io/rhatdan/myimage:latest'>, <Image: 'k8s.gcr.io/pause:3.5'>]

NOTE On many Linux distributions, the podman-docker package is available
locally. When you install this package, it installs a Docker script that redirects
Docker commands to run Podman commands. It also links all of the Docker
man pages to Podman man pages. Finally, it sets up a symbolic link between the
docker.sock and the podman.sock for rootful containers, allowing Docker tools
to use /var/run/podman/podman.sock, with no environment modifications.

The great thing is that this DOCKER_HOST trick can be used with most docker-py scripts
that have been written over the years, and you can easily switch your scripts from using
the Docker daemon to using the Podman service. If you want to use more advanced
Podman features, you need to use the podman-py package.

9.3.2 Using podman-py with the Podman API

Podman-py (https://github.com/containers/podman-py), like docker-py, is a Python
bindings library used to communicate with the Podman service. The podman-py
library is newer than the docker-py library and supports all of the advanced features of
Podman using the Libpod API.

 The Podman Python library uses the default locations of the podman.sock and
connects to it automatically. When run as non-root, the library connects to the root-
less socket located in /run/user/$UID/podman/podman.sock. Running Python with
the Podman library as root connects automatically to /run/podman/podman.sock.

 Similarly to docker-py, on my system I can install the podman-py library via the
python-podman package:

$ sudo dnf install -y python-podman
Last metadata expiration check: 0:27:40 ago on Sun 19 Jun 2022 02:14:49 PM EDT.
Dependencies resolved.
…
Installed:
 python3-podman-3:4.0.0-1.fc36.noarch
Complete!

Now build a functionally similar script, podman-images.py, using the podman-py
library. This time you don’t need to worry about the location of the Podman socket.
The podman-py library connects to the default location:

https://github.com/containers/podman-py

176 CHAPTER 9 Podman as a service
$ cat > podman-images.py << _EOF
import podman
client=podman.PodmanClient()
print(client.images.list())
_EOF

Run the script, and you will see the same results as the docker-py example, but this
library uses the Libpod API:

$ python podman-images.py
[<Image: 'quay.io/rhatdan/myimage:latest'>, <Image: 'k8s.gcr.io/pause:3.5'>]

If you want to show advanced features, like information on all the pods in the Podman
database, call the pod.lists() function, and iterate through each pod:

$ cat >> podman-images.py << _EOF
for i in client.pods.list():
 print(i.attrs)
_EOF
Now the script shows the images as well as information on the pods.
$ python podman-images.py
[<Image: 'quay.io/rhatdan/myimage:latest'>, <Image: 'k8s.gcr.io/pause:3.5'>]
{'Cgroup': 'user.slice', 'Containers': [{'Id':

➥ 'f8679839c25729eb422d38e505ae3a4b7ffe18942e2f77a997bd388e0f52313e',

➥ 'Names': '116291543d56-infra', 'Status': 'configured'}], 'Created':

➥ '2021-12-14T06:44:04.56055485-05:00', 'Id':
'116291543d5691c597132ec73a428f29f2c1f71a65fdfbaca17eb5440a5d47f6',

➥ 'InfraId':
'f8679839c25729eb422d38e505ae3a4b7ffe18942e2f77a997bd388e0f52313e',

➥ 'Name': 'mypod', 'Namespace': '', 'Networks': None, 'Status':

➥ 'Created', 'Labels': {}}

As you can see with the Python bindings, you could begin to build a Python version of
Podman, which can communicate with the remote socket.

9.3.3 Which Python library should you use?

The developers of the podman-py library based their design on the docker-py library
to make it easier for developers to transition. If you want to build an application that
works with Podman and Docker, the only choice is docker-py because podman-py
does not work with Docker. If you want to take advantage of advanced features of
Podman, you have to use podman-py. Podman-py is under heavy development, but
docker-py has a huge installed base. Podman-py works out of the box with rootful
and rootless Podman service, while if you use docker-py you have to set the DOCKER_
HOST environment variable to point at the podman.socket. Table 9.4 compares the
features of the podman-py and docker-py libraries to help you understand when to
use a particular library.

1779.4 Using docker-compose with the Podman service
Using the low-level Python libraries docker-py and podman-py for communicating
with container engine daemons and services, engineers developed higher-level tools
to orchestrate and manage containers. The most popular of these is docker-compose.

9.4 Using docker-compose with the Podman service
In the previous chapters, you have seen how to manage containers with the Podman
command line as well as how to manage multiple containers using Kubernetes YAML
launched with podman play kube. You were introduced to launching containers with
Kubernetes. In this section, you will work with yet another orchestration tool, docker-
compose (https://docs.docker.com/compose), often referred to as just compose.

 compose is one of the most popular tools for launching containers. The compose tool
predates Kubernetes and concentrates on orchestrating multiple containers on a single
node, whereas Kubernetes orchestrates multiple containers on multiple nodes. com-
pose, like Kubernetes, uses a YAML file for its container definitions. One of the reasons
compose was created was that building complex command lines to run multiple contain-
ers can be complicated. Using a structured language like YAML makes it easier to sup-
port running complex applications with multiple containers on a single node.

 compose has a huge user base, and it is likely you might want to run a compose YAML
file in your infrastructure. If you don’t believe this will happen, you can skip this section.

 The compose tool was written using docker-py and launches containers by using
the Docker REST API. Since Podman now supports the compat REST API, it also sup-
ports using docker-compose to launch Podman containers. Because Podman works in
rootless as well as rootful mode, you can even use docker-compose to launch rootless
Podman containers.

 In the rest of this section, you will create a compose YAML file just to get a feel for
how the compose command works with the Podman service. You first need to install
docker-compose. On my Fedora system, I can do this with the following command:

$ sudo dnf -y install docker-compose

Make sure the Podman systemd socket-activated service is running by running the fol-
lowing command:

$ systemctl –user start podman.socket

Table 9.4 Podman-py vs. docker-py

Support Podman-py Docker-py

Podman service ✔ ✔
Docker daemon ✘ ✔
Supports pods ✔ ✘
Advanced Podman features ✔ ✘

https://docs.docker.com/compose

178 CHAPTER 9 Podman as a service
Verify the system service is running by hitting the ping endpoint, and see if you get a
response. This step needs to be successful before you can proceed further.

$ curl -H "Content-Type: application/json" --unix-socket

➥ $XDG_RUNTIME_DIR/podman/podman.sock http://localhost/_ping
OK

Since docker-compose supports the DOCKER_HOST environment variable, make sure it
is set using this command:

$ export DOCKER_HOST=unix://$XDG_RUNTIME_DIR/podman/podman.sock

As was stated earlier in this section, compose supports its own YAML file, which is dif-
ferent than the Kubernetes YAML described in chapter 8.

 First, create a directory called example, and then navigate into it. Move the html
directory you have been using into the example directory:

$ mkdir example
$ mv ./html example
$ cd example

You need to create the docker-compose.yaml file in the example directory you have
been working in. The YAML file will create a container called myapp based on quay.io/
rhatdan/myimage:latest. Set up the container to use volumes from the host ./html
directory as well as a built-in volume, myapp_vol, used just for the example:

cat > docker-compose.yaml << _EOF
version: "3.7"
services:
 myapp:
 image: quay.io/rhatdan/myimage:latest
 volumes:
 - ./html:/var/www/html
 - myapp_vol:/vol
 ports:
 - 8080:80
volumes:
 myapp_vol: {}
_EOF

Now clean up the images and containers you have on your system to make sure you
are starting from a clean slate. Run the following commands to do that:

$ podman pod rm --all --force
$ podman rm --all --force
$ podman rmi --all --force
$ podman volume rm --all --force

1799.4 Using docker-compose with the Podman service
To show how compose interacts with the Podman service, launch the container with
the compose command. Notice that compose tells Podman to pull down the image.
Then compose tells Podman to create a container named example_myapp_1 along with
a volume named example_myapp_vol, which will be volume mounted into the con-
tainer along with the ./html directory.

$ docker-compose up
Pulling myapp (quay.io/rhatdan/myimage:latest)...
59bf1c3509f3: Download complete
c059bfaa849c: Download complete
Creating example_myapp_1 ... done
Attaching to example_myapp_1

In a different terminal, run the podman ps command:

$ podman ps --format "{{.ID}} {{.Image}} {{.Ports}} {{.Names}}"
230fce823ff6 quay.io/rhatdan/myimage:latest 0.0.0.0:8080->80/tcp

➥ example_myapp_1

Now check to see if Podman created a volume:

$ podman volume ls
DRIVER VOLUME NAME
local example_myapp_vol

Go back to the original window, and enter Ctrl-C to stop docker-compose:

^CGracefully stopping... (press Ctrl+C again to force)
Stopping example_myapp_1 ... done

This will shut down the container:

$ podman ps --format "{{.ID}} {{.Image}} {{.Ports}} {{.Names}}"

If you execute the podman ps -a command, you will see that the container still exists
but is not running:

$ podman ps -a --format "{{.ID}} {{.Image}} {{.Ports}} {{.Names}}"
230fce823ff6 docker.io/library/alpine:latest 0.0.0.0:8080->80/tcp

➥ example_myapp_1

Now, if you run docker-compose down, it will tell Podman to remove the container
from the system:

$ docker-compose down
Removing example_myapp_1 ... done
Removing network example_default

Listing 9.2 The output of executing docker-compose against the Podman socket

Pulling the
myimage image

Creating the example_
myapp_1 container

180 CHAPTER 9 Podman as a service
Verify all containers are gone with the podman ps -a command again:

$ podman ps -a --format "{{.ID}} {{.Image}} {{.Ports}} {{.Names}}"

As you can see, Podman works nicely with docker-compose to orchestrate containers.

TIP While docker-compose works nicely with the Podman service, I think if
you are starting a fresh project, it is better to work with Kubernetes YAML and
podman play kube because this allows you to more easily move your containers
into Kubernetes.

As you have seen, the Podman service is useful for allowing remote processes to
manipulate your pods and containers. Even the Podman command can be used as a
client and communicate with the Podman service.

9.5 podman - -remote
As you scale out applications, you probably want to run your containerized applica-
tions on multiple machines. You could ssh into each box and run Podman com-
mands locally to manage the environment, or you could write code to use the
Python library described in section 9.4. The Podman developers also built client
support into the Podman command. You can use the podman command to directly
connect to these remote Podman services and manage the container environment
on the remote machines.

 The Podman command has a special option, --remote, allowing it to communi-
cate with the socket-activated Podman service. Instead of executing the commands
and containers as a child of the Podman process, it communicates with the service
over the REST API.

 Because Podman is a tool for running Linux containers, the complete podman
command can only be run on Linux. The Podman developers wanted to support
other operating systems, at least in client mode. To support running Podman on
non-Linux machines, Podman can be built in two different ways. Up until now, you
have been working with the fully fledged Podman, which has the --remote option.
The Podman executable can be compiled with only support for communicating
with the Podman service. Podman built this way is often called podman-remote. The
podman-remote command is the command that is shipped on some operating sys-
tems, like Mac and Windows (covered more fully in appendixes E and F). If you
have been testing Podman on a Mac or Windows machine while reading this book,
then you have already been using podman-remote, which transparently communi-
cates with the Podman service running in a VM or on a different machine.

9.5.1 Local connections

As previously mentioned, the podman --remote command connects, by default, to
the local podman.socket, referred to as a local connection (figure 9.2). Try out podman
--remote with the Podman system service you enabled in section 9.1.1. Notice how

1819.5 podman - -remote
the podman --remote version shows you the version of the Podman client as well as
the Podman server; in this case, they are the same executable.

$ podman --remote version
Client:
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18.2
Built: Sun Jun 19 07:35:42 2022
OS/Arch: linux/amd64
Server:
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18.2
Git Commit: a2b78b627f0a9deef83a5b5e4ecffc9cdb5a72b1-dirty
Built: Sun Jun 19 07:35:42 2022
OS/Arch: linux/amd64

You can use the exact same commands to start the container:

Listing 9.3 The output of podman --remote executing the version API

Podman

service

podman.service

unit file

podman.socket

unit file

Container

Container host

$XDG_RUNTIME_DIR/podman/podman.sock
Systemd

The Podman client communicates
via the Libpod REST API to the
podman.service

podman–remote

Figure 9.2 podman --remote connecting to local podman.socket

Client version
of Podman

Server version
of Podman

182 CHAPTER 9 Podman as a service
$ podman --remote run ubi8 echo hi
Resolved "ubi8" as an alias (/etc/containers/registries.conf.d/

➥ 000-shortnames.conf)
Trying to pull registry.access.redhat.com/ubi8:latest…
..
hi

As you can imagine, it is not that useful in this mode, since you can run Podman with-
out the --remote option and manage the same container environment. Local connec-
tions are mainly used for testing of the API, especially in continuous integration (CI)
systems. podman --remote becomes much more interesting when you use it to commu-
nicate with truly remote machines.

9.5.2 Remote connections

The main purpose of the podman --remote command is allowing you to manipulate
pods and containers on a separate machine using the Podman service. Install Podman
on a Linux machine or VM, which also has the SSH daemon running. On the local
operating system, when you run a Podman command, Podman connects to the server
via SSH. It then connects to the Podman service by using systemd socket activation
and communicating with our REST API, as shown in figure 9.3.

The command-line interface of Podman with the --remote option is exactly the same
as the regular Podman commands. When you run the Podman commands, it feels like
you are running the containers locally; however, the container processes are running

1. The SSH daemon listens
and authenticates
remote connections.

4. The SSH daemon relays
connection to the
podman.socket.

2. podman --remote
connects over SSH
to the server host.

3. podman --remote
communicates via the
REST API over the SSH
connection.

Client host

Podman

service

SSH

daemon

Listen on

network

podman–remote

podman.service
unit file

podman.socket
unit file

Systemd

Container

$XDG_RUNTIME_DIR/podman/podman.sock

Figure 9.3 podman --remote connecting over SSH to the server machine

1839.5 podman - -remote
on the remote machine. There are a few options that are not supported in remote
mode, listed in table 9.5.

Podman commands are executed on the server. From the client’s point of view, it
seems like Podman runs locally. Now you need to complete the configuration of the
Podman service on the remote server.

ENABLING SSHD CONNECTIONS

For the Podman client to communicate with the server, you need to enable and start
the SSH daemon on your Linux machine, if it is not already enabled:

$ sudo systemctl enable --now -s sshd

Now that the SSHD daemon is running, you need to enable the Podman service on
the remote machine.

ENABLING THE PODMAN SERVICE ON THE SERVER MACHINE

Before performing any Podman client commands, you must enable the podman.sock
systemd service on the Linux server or VM. In these examples, you are running Podman

Table 9.5 Options not supported by the podman --remote command

Options Explanation

 --env-host The environment on two different machines makes little sense to share; in
some cases these can be two different operating systems, like Windows and
Macs talking to a Linux Podman service.

--group-add=keep-
groups

The --group-add option works in --remote mode, but the keep-groups
special flag does not. The keep-groups flag tells Podman to leak the groups
that the current process has access to into the container. Since this is a
client-server procedure, the leaking is impossible.

--http-proxy The --http-proxy option tells Podman to use the HTTP proxy environment
variables off of the client machine and leak them into the server. Since the
proxy is normally set up on the server, the --http-proxy option is not
allowed with the --remote option.

--preserve-fds The --preserve-fds option leaks file descriptors from the calling process
into the container; since this is a remote connection, there is no way to leak
the file descriptors.

--volume This is supported, except that the source volume will come from the remote
machine, not necessarily the one that is running the podman command
(unless they are on the same machine). If you are using a VM, you need to
mount the directory on the host machine into the VM first; then Podman
inside of the VM sees the mount and mounts it into the container.

--latest, -l Since there are potentially multiple different users talking to the same server
at the same time, the concept of --latest was too racy, so it is not
supported.

184 CHAPTER 9 Podman as a service
as a normal, unprivileged user. For rootless Podman on a server to run properly,
enable this socket permanently using the following command:

$ systemctl --user enable --now podman.socket

Normally, when you log out of a system, systemd stops all processes on the system. You
need to tell systemd to allow the remote users processes to linger for rootless mode:

$ sudo loginctl enable-linger $USER

This also tells systemd to start listening on this socket at boot time. Once you have the
service running on one system, you can verify the socket is listening with a Podman
command:

$ podman --remote info
Host:
 arch: amd64
 buildahVersion: 1.16.0-dev
…

NOTE You can enable the rootful podman service with the following command:

$ sudo systemctl enable --now podman.socket

The previous enable-linger command is only for rootless mode. Now that you have
the remote service enabled and running along with the SSHD daemon, you can go
back to the client machine.

9.5.3 Setting up SSH on the client machine

Remote Podman uses SSH to communicate between the client and server when they are
on separate machines. By default, SSH will ask you to provide the usernames and pass-
words on each command, unless you set up SSH keys. To set up your SSH connection,
you need to generate an SSH key pair from your client machine. If you have existing SSH
keys, you can just use them; it’s even better if you already have shared keys with the server.
On my Linux system, I can generate SSH keys with a command like the following:

$ ssh-keygen -t ed25519
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/myuser/.ssh/id_ed25519):

Once you have finished generating your keys, you can set up trust between the client
and server machine with the ssh-copy-id command or some similar command. The
public key, by default, will be in your home directory under $HOME/.ssh/id_ed25519
.pub. You need to copy the contents of id_ed25519.pub and append it into ~/.ssh/
authorized_keys on the Linux server. See https://red.ht/3HuxPT6 for more informa-
tion on configuring your SSH environment:

$ ssh-copy-id myuser@192.168.122.1
passwd:

https://red.ht/3HuxPT6

1859.5 podman - -remote
If you do not wish to use SSH keys, you will be prompted with each Podman command
for your login password. Now that you have shared your SSH keys with the server, the
next step is configuring the connection with Podman.

9.5.4 Configuring a connection

The podman system connection command allows you to manage SSH connections to
be used by the podman --remote command. You can add a connection by using the
podman system connection add command; name the connection server1. The
default identity file will be chosen, or you can use the -–identity option to specify
the SSH key to use. Finally, you need to specify the full SSH URL for the Podman
socket. This includes the user account, myuser, and IP address, as well as the path to
the Podman socket for the user account:

$ podman system connection add server1 --identity ~/.ssh/id_ed25519

➥ ssh://myuser@192.168.122.1/run/user/1000/podman/podman.sock

This Podman command adds a remote connection to Podman. Since this was the first
connection added, Podman marks the connection as the default.

 List the available connections with the podman system connection list command.
Notice that the * after the connection name indicates it is the default connection:

$ podman system connection list
Name Identity URI
system1* id_ed25519

➥ ssh://myuser@192.168.122.1/run/user/1000/podman/podman.sock

Now you can test the connection with podman info:

$ podman --remote info
host:
 arch: amd64
 buildahVersion: 1.23.1
 cgroupControllers:
…

NOTE You can use the --connection (-c) if you have more than one connec-
tion and want to choose the non-default man podman-system-connection for
all possible options.

You can use the podman option or the podman-remote clients to manage containers
running on Linux servers or VMs. The communication between client and server
relies heavily on SSH connections, and the use of SSH keys is encouraged. Once you
have Podman installed on your remote server, you need to set up a connection using
podman system connection add, which can then be used by subsequent Podman com-
mands. Table 9.6 lists the available Podman system commands.

186 CHAPTER 9 Podman as a service
Summary
 Podman can be run as a REST API service.
 Podman supports two REST API endpoints.
 The Podman socket supports two APIs.
 Compatibility mode or Docker mode allows Docker client tools to work with

Podman.
 Podman mode allows remote clients to take advantage of advanced Podman

features.
 Podman-py is a Python bindings library used to communicate with the Pod-

man service.
 Docker-py is a Python bindings library used to communicate with the Pod-

man compatibility service.
 Podman supports running docker-compose with the compatibility service to

orchestrate compose containers on a single node.
 The podman --remote command communicates with the Podman service

over SSH to manage containers.
 The podman system connect command manages SSH connections to remote

Podman services, making it easier to manage containers in your environment.

Table 9.6 Podman system commands

Command Man page Description

connection podman-system-connection(1) Manages remote SSH destinations

df podman-system-df(1) Shows Podman’s disk usage

info podman-system-info(1) Displays Podman system information

migrate podman-system-migrate(1) Migrates containers to a new user namespace

prune podman-system-prune(1) Removes unused pod, container, volume, and
image data

renumber podman-system-renumber(1) Migrates lock numbers

reset podman-system-reset(1) Resets Podman storage

service podman-system-service(1) Runs the API service

Part 4

Container security

In the final part of the book, part 4, I divulge all I know about container secu-
rity. This part is very technical, but you learn some key concepts that will help
you understand when a container gets permission denied. It also explains the
benefits of running applications within a container from a security point of view.
Containerizing applications adds tremendous protection from potential hacks
to your host system.

 In chapter 10, I explain all of the features of the kernel that Podman uses to
isolate containers from each other as well as the host system. I explain SELinux,
seccomp, Linux capabilities, read-only mount points, and many other features.

 Chapter 11 digs into security considerations. You learn the security best
practices for running your containers in production, how you should design
your application, and how you should run your containerized application in
production.

Security
container isolation
In this chapter and chapter 11, I review and demonstrate some additional secu-
rity considerations when using Podman to run containers. Some of the content

This chapter covers
 All Linux security features used to keep containers

isolated from each other

 Read-only access to kernel filesystems needed for
processes within a container but which must be blocked
from write access

 Masking of kernel filesystems to hide information from
the host system

 Linux capabilities limiting the power of root

 The PID, IPC and network namespaces, which hide
most of the operating system from processes within
containers

 The mount namespace, which along with SELinux limit
the container processes’ access to only the designated
image and volumes

 The user namespace, which allows you to write root
processes inside of a container that are not root outside
of a container
189

190 CHAPTER 10 Security container isolation
was covered in other chapters, but I think it is useful to concentrate on these fea-
tures from a security perspective.

 One of the most frequent problems I see with people running containers is that
when the container process is denied some access, the user’s first reaction is to run the
container in --privileged mode, which turns off all security separation for your con-
tainer. Understanding how to deal with the security features discussed in this chapter
helps you avoid needing to do this.

 When I look at containers from a security point of view, I examine how to protect
the host kernel and filesystem from the processes inside the container. I wrote a color-
ing book, The Container Coloring Book (https://red.ht/3gfVlHF), illustrated by Máirín
Duffy (@marin), describing the security features of containers based on the three pigs
(figure 10.1).

The analogy I use in the book is that the three pigs are applications. I then discuss
where they live and their choices of housing compared to computer systems.

 The single-family house is equivalent to one application on a single isolated node.
Living in a duplex is equivalent to running each application in a separate VM. Living in a

Figure 10.1
The Container Coloring Book
(https://red.ht/3gfVlHF)

https://red.ht/3gfVlHF
https://red.ht/3gfVlHF

19110.1 Read-only Linux kernel pseudo filesystems
hotel or apartment building is similar to containers, where you get your own apartment,
but you rely on the security of the front desk to control the access to your living space. If
the front desk is compromised, then your apartment is going to be compromised. Con-
tainers are similar to this in that they rely on the security of the kernel. If one container
can take over the host kernel, then it can take over all of the container applications run-
ning on the system. Also, if they escape to the underlying filesystem, they might be able
to read and write all of the data of the containers on the system.

 From this perspective, I see the number-one goal of the host as being to protect
the host kernel and filesystems from the container processes. The rest of this chap-
ter describes the tools used to protect the host kernel and filesystem from container
processes.

 Protecting the kernel from potentially hostile containers is the primary goal of
container security. If the kernel is vulnerable, then the rest of the system and all con-
tainers are vulnerable. In many cases, the only exposure to the host system for a con-
tainer is the host kernel itself.

 Processes within a container can interact with the kernel in many different ways.
This section examines these communications and the operating system features used
to secure the container processes.

 The Linux kernel provides filesystems that allow processes to communicate and
configure the kernel. Protecting these filesystems from confined container processes
is the first security feature you will examine.

10.1 Read-only Linux kernel pseudo filesystems
These Linux kernel pseudo filesystems are generally mounted under /proc and /sys.
Table 10.1 lists some of the Linux kernel pseudo filesystems mounted on my machine.

Table 10.1 Filesystems mounted as read only

Filesystem mount point Pseudo filesystem description

/sys The sysfs filesystem allows viewing and manipulating objects from user-
space, which are created and destroyed by kernel space.

/sys/kernel/security The security pseudo filesystem is used to read and configure general security
modules. An example is the Integrity Measurement Architecture (IMA) model.

/sys/fs/cgroup The cgroup filesystem is used to manage control groups.

/sys/fs/pstore The pstore filesystem stores nonvolatile information useful for diagnosing
the cause of a system crash.

/sys/fs/bpf The Berkeley Packet Filter (BPF) filesystem is a mechanism to instrument
the Linux kernel with user programs that reveal kernel information and con-
trol the way processes run on a system.

/sys/fs/selinux The SELinux filesystem is used to configure SELinux in the kernel (see sec-
tion 10.2.7).

/sys/kernel/config The configfs filesystem is for creating, managing, and destroying kernel
objects from user-space.

192 CHAPTER 10 Security container isolation
Most processes require read access to these pseudo kernel filesystems to succeed, but
only administrator processes require write access. Normally, the kernel relies on the
separation of root from non-root or possession of the CAP_SYS_ADMIN capability (see
section 10.2.2) to modify these filesystems.

 Often containers need to run as root, requiring container security to use other
means to prevent the writing of these kernel filesystems by the root process. Podman
does not mount most of these advanced kernel pseudo filesystems. It does mount
/sys, /sys/fs/cgroup, and /sys/fs/selinux as read only. When you are in a PID name-
space, the /proc filesystem changes, meaning the /proc inside a container is not the
host’s /proc. Processes within the container can only affect other processes within
the container.

 The /sys filesystems and the namespaced /proc filesystem sometimes leak host
information into the container. Because of this, Podman mounts /dev/null over files
and mounts read-only tmpfs filesystems over directories to prevent container access.
Podman also bind mounts certain subdirectories as read only over themselves to pre-
vent the container process from writing to them. See table 10.2 for a complete list of
files and directories that Podman masks over for security purposes.

I have found that almost all container images run fine with this additional security.
Sometimes a containerized application may need additional access to one of these
masked-over directories.

10.1.1 Unmasking the masked paths

Rather than force the container to run --privileged mode, you can tell Podman to
unmask a directory. In the following example, you run a container and see there are
no files or directories under /proc/scsi because it is mounted over with a tmpfs:

$ podman run --rm ubi8 ls /proc/scsi

You can use the --security-opt unmask=/proc/scsi flag to remove the mount point
and expose the underlying files and directories:

$ podman run --rm --security-opt unmask=/proc/scsi ubi8 ls /proc/scsi
device_info
scsi
sg

Table 10.2 Filesystem fields masked over with Podman

Type of masking Paths

Read-only tmpfs
mounted over the
directory

/proc/acpi, /proc/kcore, /proc/keys, /proc/latency_stats, /proc/timer_list,
/proc/timer_stats, /proc/sched_debug, /proc/scsi, /sys/firmware,
/sys/fs/selinux, /sys/dev/block

Read-only bind mount
over the directory

 /proc/asound, /proc/bus, /proc/fs, /proc/irq, /proc/sys, /proc/sysrq-trigger

19310.1 Read-only Linux kernel pseudo filesystems
You can even use a * to unmount all directories under a certain path:

$ podman run --rm --security-opt unmask=/proc/* ubi8 ls /proc/scsi
device_info
scsi
sg

Unmasking makes your container slightly less secure, but it is much better than going
all the way to --privileged and turning off all of the security. In certain situations,
you might want to make the system more secure by masking over parts of the pseudo
filesystems. The podman run man pages list the masked filesystems:

$ man podman run
…
 • unmask=ALL or /path/1:/path/2, or shell expanded paths (/proc/*):
Paths to unmask separated by a colon. If set to ALL, it will unmask all the
paths that are masked or made read only by default. The default masked
 paths are /proc/acpi, /proc/kcore, /proc/keys, /proc/latency_stats,
/proc/sched_debug, /proc/scsi, /proc/timer_list, /proc/timer_stats,
/sys/firmware, and /sys/fs/selinux.
 The default paths that are read only are /proc/asound, /proc/bus,
/proc/fs, /proc/irq, /proc/sys, /proc/sysrq-trigger, /sys/fs/cgroup.

10.1.2 Masking additional paths

If you are very security conscious or have a container you don’t trust with certain access
provided to containers, you can add additional masked paths with the --security-opt
mask flag. For example, if you want to prevent a container process from seeing the
devices in /proc/sys/dev, run the following:

$ podman run --rm ubi8 ls /proc/sys/dev
cdrom
hpet
i915
mac_hid
raid
scsi
tty

You can mask over it with the --security-opt mask=/proc/sys/dev flag:

$ podman run --rm --security-opt mask=/proc/sys/dev ubi8 ls /proc/sys/dev

You saw how Podman prevents root processes from reading and, more importantly,
writing to pseudo filesystems. The container processes can actually see what is mounted
over within the container by looking at /proc/self/mountinfo.

$ podman run –rm ubi8 cat /proc/self/mountinfo
…

Listing 10.1 The mount table within a Podman container

194 CHAPTER 10 Security container isolation
1628 1610 0:5 /null /proc/kcore rw,nosuid –

➥ devtmpfs devtmpfs rw,seclabel,size=4096k,

➥ nr_inodes=1048576,mode=755,inode64
…
1620 1595 0:86 / /sys/firmware ro,relatime - tmpfs tmpfs
rw,context="system_u:object_r:container_file_t:s0:c406,c915",size=0k,uid=32

➥ 67,gid=3267,inode64
…

You might be asking yourself, “If the container knows what has been mounted, what
prevents the root user within the container from removing the mounts or remounting
filesystems’ read/write and then attacking the host kernel?

10.2 Linux capabilities
Most Linux people understand Linux has two types of users: root (privileged process)
and everyone else (nonprivileged processes). Root is all powerful, and non-root has
much more limited powers, specifically when configuring and modifying the kernel.
Sometimes a non-privileged process needs privileges to execute a certain command-
line ping or sudo. Linux supports a way to mark these files as setuid, and when a non-
privileged process executes them, the new process gains the privilege.

 The binary difference between privileged and unprivileged processes ended in
Linux around 2000. Kernel engineers broke down the power of root into a group of
different privileged capabilities. Currently, on my system, the Linux kernel supports
41. You can see the complete list of capabilities using the capsh program. Execute the
capsh program to see the list of capabilities on your system. You will see the current
set of capabilities for your processes as being empty. The Bounding set of capabilities is
the set of capabilities your process can get from executing a setuid program.

$ capsh --print
Current: =
Bounding set =
cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,

➥ cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,

➥ cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,

➥ cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,

➥ cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,

➥ cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,

➥ cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,

➥ cap_block_suspend,cap_audit_read,cap_perfmon,cap_bpf,cap_checkpoint_restore
Ambient set =
…
uid=3267(dwalsh) euid=3267(dwalsh)
gid=3267(dwalsh)

Listing 10.2 capsh –print showing the capabilities available to your user’s process

Shows /dev/null mounted
over /proc/kcore

Shows a tmpfs mounted
read-only over /sys/firmware

The Current set of capabilities
shows no capabilities.

The Bounding set of capabilities
shows all (41) capabilities.

Because you ran the capsh command
as a normal user, you see your UID
and GID listed.

19510.2 Linux capabilities
This means your user process can execute the sudo command and get the full set of
capabilities as root. You can read information about what each capability does in the
capabilities man page by executing man capabilities. Over the years, the community
has figured out that almost all containers do not require the full list of capabilities
because they seldom modify the kernel.

10.2.1 Dropped Linux capabilities

Because container-confined processes are not supposed to manipulate the operating
system, and specifically the kernel, Podman can run root within its containers with far
fewer capabilities. You can examine the default list of capabilities available within a
Podman container by executing the same capsh program.

$ podman run --rm ubi8 capsh --print
Current: =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,

➥ cap_setuid,cap_setpcap,cap_net_bind_service,cap_sys_chroot,

➥ cap_setfcap+eip
Bounding set =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,

➥ cap_setuid,cap_setpcap,cap_net_bind_service,cap_sys_chroot,cap_setfcap
…
uid=0(root)
gid=0(root)
groups=

As you observe, Podman, by default, dropped 30 capabilities—from 41 down to 11—
when running a container. Even though the container has root privileges, it is far less
powerful than root on the system.

NOTE Docker also drops capabilities but leaves 14 capabilities. Podman runs
with tighter security by dropping the following additional capabilities: CAP_
MKNOD, CAP_AUDIT_WRITE, and CAP_NET_RAW.

The list of capabilities still allowed within a container mainly concern controlling mul-
tiple processes; for example, CAP_SETUID and CAP_SETGID allow processes inside the
container to change to different UIDs. An example of where this is important is run-
ning your web application as UID=60, but when the container process started, it
needed to run as root for a short time before changing its UID to 60. If Podman
dropped CAP_SETUID, then the root process within the container is not allowed to
change to the web services UID.

 Another interesting capability Podman allows is CAP_NET_BIND_SERVICE, which
enables a process to bind to a network port less than 1024—for example, port 80.
Recall from chapter 2 that you cannot bind port 80 on your host to port 80 within the

Listing 10.3 The default list of capabilities available within a Podman container

The Current set of capabilities shows
just 11 capabilities, since the container
process is running as root.

The Bounding set of
capabilities shows the

same (11) capabilities.

Because containers default to running as
root, you see the UID and GID as root.

196 CHAPTER 10 Security container isolation
container. User processes do not have CAP_NET_BIND_SERVICE, so they cannot bind to
port 80. Table 10.3 lists the default capabilities available to root running within a con-
tainer with Podman. This list can be modified in the containers.conf file using the
default_capabilities field under the containers table.

I introduced section 10.2 by asking what prevents the root process from unmounting
or remounting the read-only filesystems. The answer is Podman dropping the CAP_
SYS_ADMIN capability.

10.2.2 Dropped CAP_SYS_ADMIN

The most powerful Linux capability is CAP_SYS_ADMIN. I describe this capability in the
following way: Imagine you are a kernel engineer adding a new feature into the ker-
nel, and this feature requires privilege access. You look to see the list of capabilities,
and you don’t find a capability that is a great match for the access. Kernel engineers
can go through the hassle of creating a new capability; or, say this is something a sys-
tem administrator needs to do and there is a CAP_SYS_ADMIN. I might as well require
that capability. If you look at the man capabilities information, you see multiple pages
of features the CAP_SYS_ADMIN capability blocks.

 One feature CAP_SYS_ADMIN controls is the ability to mount and unmount filesys-
tems. Because this capability is dropped by default, root processes in Podman contain-
ers cannot unmount or remount the read-only mount points.

 As you learned previously, 11 capabilities are still allowed. In most cases, your con-
tainerized process does not even need those capabilities, meaning you can drop addi-
tional ones.

Table 10.3 Default list of capabilities allowed root processes in a container

Option Description

CAP_CHOWN Make arbitrary changes to file UIDs and GIDs.

CAP_DAC_OVERRIDE Bypass file read, write, and execute permission checks.

CAP_FOWNER Bypass permission checks on operations on the filesystem UID.

CAP_SETFSID Don't clear set-user-ID and set-group-ID mode bits when mod-
ifying a file.

CAP_KILL Bypass permission checks for sending signals.

CAP_NET_BIND_SERVICE Bind a socket to internet domain privileged ports (port numbers less
than 1024).

CAP_SETFCAP Set arbitrary capabilities on a file.

CAP_SETGID Change a process’s group ID (GID) or supplementary GID list.

SET_SETPCAP Add and drop any capability from the calling thread's bounding set.

CAP_SETUID Make arbitrary manipulations of the process user ID (UID).

CAP_SYS_CHROOT Allow chroot, and change mount namespaces.

19710.2 Linux capabilities
10.2.3 Dropping capabilities

I recommend people run their applications with the least privileges possible. One way
of increasing the security of the system is dropping additional capabilities.

 Imagine your containerized process does not need to bind to ports < 1024. You can
execute Podman with the --cap-drop=CAP_NET_BIND_SERVICE flag and drop that
capability from your container.

$ podman run --cap-drop CAP_NET_BIND_SERVICE ubi8 capsh --print
Current: =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,

➥ cap_setuid,cap_setpcap,cap_sys_chroot,cap_setfcap+eip
Bounding set =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,

➥ cap_setuid,cap_setpcap,cap_sys_chroot,cap_setfcap
…

You can even drop all capabilities using the --cap-drop=all flag:

$ podman run --cap-drop all ubi8 capsh --print
Current: =
Bounding set =

Even though your container is running as root, it has no capabilities to modify the ker-
nel. Sometimes your container fails to run with the limited list of capabilities provided
by Podman; in this case, you can add required capabilities.

10.2.4 Adding capabilities

In some situations, your container might fail because it does not have a certain capa-
bility. You can simply run --privileged and turn off all security in these cases, but a
better solution is just adding required capabilities.

 Imagine you have a container that wants to create a raw IP packet on its name-
spaced network, which requires CAP_NET_RAW. Podman, by default, does not allow this.
Rather than running the container as --privileged, you can use the --cap-add
CAP_NET_RAW flag:

$ podman run --cap-add CAP_NET_RAW ubi8 capsh --print
Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,

➥ cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_

➥ sys_chroot,cap_setfcap+eip
Bounding set =cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,

➥ cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_

➥ sys_chroot,cap_setfcap
…

Listing 10.4 Capabilities inside a container when you drop CAP_NET_BIND_SERVICE

Notice the list of Current capabilities no
longer includes CAP_NET_BIND_SERVICE.

Notice that the list of Bounding capabilities
no longer includes CAP_NET_BIND_SERVICE.

198 CHAPTER 10 Security container isolation
If this is the only capability needed by your container, you can both drop all capabili-
ties and just add back in this CAP_NET_RAW by using the --cap-drop and --cap-add
flags at the same time:

$ podman run --cap-drop=all --cap-add CAP_NET_RAW ubi8 capsh --print
Current: = cap_net_raw+eip
Bounding set =cap_net_raw
…

10.2.5 No new privileges

Podman has an option, --security-opt no-new-privileges, which disables the abil-
ity for container processes to gain additional privileges. Basically, it locks the processes
into the group of Linux capabilities they have when they are started. Even if they can
execute a setuid program, the kernel denies it from gaining additional capabilities.
The no-new-privileges option also affects SELinux and prevents SELinux label tran-
sitions. Even if SELinux had a bug in its rules database, the container process would
not be allowed to change its label.

10.2.6 Root with no capabilities is still dangerous

Dropping capabilities means your container is running much more securely, but run-
ning all of your containers without any Linux capabilities is much more secure.
Another problem to consider when running a container as root, even if you drop all
capabilities, is that the process is still running as root. The root process is allowed to
modify all files on the system that are owned by root. The root process can modify a
system file and trick a privileged administrator into executing it. Also, some client-
server applications trust the client side of the connection simply if it is running as root
(e.g., Docker). Podman can solve both of these problems by using the user namespace.

10.3 UID isolation: User namespace
Back in section 6.1.1, I introduced the concept of the user namespace. Recall that
UIDs were allocated via the /etc/subuid and /etc/subgid files for a rootless user. For
my accounts, the range of UIDs from 100000–165535 was allocated along with my UID
3265 and was used by Podman when launching containers. See figure 10.2 for a
description of the user namespace mapping.

 This user namespace allows my account to have root access within the container
that is not root on the host. Running containers in a user namespace eliminates the
problem of having processes running as the root user, and the inherent trust is built
into some daemons.

 One problem with rootless users is that, by default, all of the containers run with
the same user namespace. Theoretically, from a user namespace point of view, one
container can attack another container, since they run with duplicate UIDs. Also, if
the container processes break out, they can read/write content in your home direc-
tory, since the root processes within the containers are running with your UID.

19910.3 UID isolation: User namespace
10.3.1 Isolating containers using the - -userns=auto flag

Podman has a feature for allocating unique ranges of UIDs for every container it
launches. Since there are limited UIDs allocated for each user account, this feature
works best when launched by the root user.

 To launch multiple containers within their own user namespace, you need to first
allocate the UIDs and GIDs to be used for these containers. On a Linux system, there
are 4 billion UIDs available. Podman recommends that you allocate the highest 2 bil-
lion UIDs for your containers. You can do this by adding the following containers line
to your /etc/subuid and /etc/subgid file.

cat /etc/subuid
dwalsh:100000:65536
containers:2147483647:2147483648
cat /etc/subgid
dwalsh:100000:65536
containers:2147483647:2147483648

You can launch a container within a unique user namespace using the --userns=auto
option. Podman allocates the UIDs for the container starting with UID 2147483647,
which you specified in the /etc/subuid file. Podman then examines the container
image for all UIDs defined within it as well as the /etc/passwd file if it exists in the

Listing 10.5 The contents of the /etc/subuid and /etc/subgid files

4,294,967,296

Contents of my
/etc/subuid file

The UIDs seen by the
container that are not
mapped are treated as
overflow or nobody users.“ ”

Range of UIDs available
within a container

Range of UIDs on the host;
32-bit unsigned int, 0–4,294,967,296

Figure 10.2 The mapping of UIDs used by rootless Podman for my account

Allocates the top 2 billion UIDs to the
container user used by Podman. Adding
this line tells other tools on your system,
like useradd, to avoid allocating UIDs and
GIDs within this range.

200 CHAPTER 10 Security container isolation
image and then uses this to allocate the number of UIDs required to run the con-
tainer with a default minimum of 1024:

podman run --userns=auto ubi8 cat /proc/self/uid_map
 0 2147483647 1024

If I run a second container with a specific user 2000, then the allocation of UIDs
reflects this. You see that the number of UIDs allocated is 2001—UID 2000 plus one
for the root user:

podman run --user=2000 --userns=auto ubi8 cat /proc/self/uid_map
 0 2147484671 2001

Also, note that the starting UID for the first container was 2147483647, while the start-
ing UID for the second container was 2147484671. Subtracting the first UID
2147483647 from the second UID 2147484671 gives you 1024, which is the number of
UIDs allocated for the first container. No UID within the first container overlaps with
the second container, meaning no process within the first container can attack pro-
cesses within the second container, and vice versa.

 You can override the default size of the user namespace used within the container
with a size option if Podman does not allocate enough UIDs or GIDs for your con-
tainer. In this example, you tell Podman to allocate 5000 UIDs for the container
with --userns=auto:size=5000:

podman run --userns=auto:size=5000 ubi8 cat /proc/self/uid_map
 0 2147486672 5000

When containers are removed, Podman reclaims the UIDs used for the deleted con-
tainers and uses those UIDs for the next container created with the --userns=auto
flag. You see this when you launch back-to-back containers with the --rm option.
Notice that they start with the same UID. In the following example, both containers
start with UID 2147491672:

podman run --rm --userns=auto ubi8 cat /proc/self/uid_map
 0 2147491672 1024
podman run --rm --userns=auto ubi8 cat /proc/self/uid_map
 0 2147491672 1024

The name used in /etc/subuid and the minimum and maximum number of UIDs
used for user namespaces is defined in the storage.conf file described in table 10.4.

20110.3 UID isolation: User namespace
10.3.2 User-namespaced Linux capabilities

In section 10.2 you learned about Linux capabilities and how they are used to break
up the power of root. When a container is launched within a user namespace, it can
have Linux capabilities. These capabilities can only affect the UIDs and GIDs mapped
into the user namespace. Capabilities that do not involve UIDs and GIDs are lim-
ited. Usually, they only affect the other namespaces that are mapped with the user
namespace.

 For example, CAP_NET_ADMIN is the capability that allows you to manipulate the
network stack. It allows a process to set up firewall rules and network routing tables. A
process with a namespaced CAP_NET_ADMIN is only allowed to modify the namespaced
network assigned to the user namespace, not the host’s network namespace.

 In the following example, the list of capabilities within a user-namespaced con-
tainer is the same as when you launch one without a user namespace. In the second
command using the --userns=auto flag, the capabilities are namespaced capabilities:

podman run --rm ubi8 capsh --print | grep Current
Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,

➥ cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_sys_chroot,

➥ cap_setfcap+eip
podman run --rm --userns=auto ubi8 capsh --print | grep Current
Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,

➥ cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_sys_chroot,

➥ cap_setfcap+eip

To prove this, attempt to chown a file within a container to a nonexistent UID. It fails
because the CAP_CHOWN capability only allows the root process inside a container to
chown files to any UID as long as the UID is mapped to the user namespace:

podman run --rm --userns=auto:size=5000 ubi8 chown 6000 /etc/motd
chown: changing ownership of '/etc/motd': Invalid argument

Table 10.4 The fields used within storage.conf files to override the user namespace auto settings

Option Description

root-auto-
userns-user

Defines the username used to look up one or more UID/GID ranges in the
/etc/subuid and /etc/subgid file. These ranges are partitioned into containers
configured to create a user namespace automatically. Containers configured to
automatically create a user namespace can still overlap with containers with an
explicit mapping set. The root-auto-userns-user setting is ignored by root-
less users. It defaults to containers.

auto-userns-
min-size

Defines the minimum size for a user namespace created automatically. It defaults
to 1024.

auto-userns-
max-size

Defines the maximum size for a user namespace created automatically. It defaults
to 65536.

202 CHAPTER 10 Security container isolation
It succeeds if you chown to a UID mapped within the user namespace:

podman run --rm --userns=auto:size=5000 ubi8 chown 4000 /etc/motd

Suppose you launch all of your system containers with the --userns=auto flag. In
that case, you get the benefit of running the container within its unique user name-
space isolated from all other containers and UIDs on the host system. You also get
root privileges with limited capabilities, and these processes outside the container
have no capabilities on the host system.

10.3.3 Rootless Podman with the - -userns=auto flag

The --userns=auto works with rootless containers, based on the number of UIDs
available to the user. But this number is very limited. You can run the previous exam-
ples and see that the user namespaces start at UID 1. UID 1 is relative to the user
namespace of the rootless user:

$ podman run --userns=auto ubi8 cat /proc/self/uid_map
 0 1 1024
$ podman run --userns=auto ubi8 cat /proc/self/uid_map
 0 1025 1024

If you examine your user namespace, you’ll see that UID 1 in your user namespace is
100000:

$ podman run --rm ubi8 cat /proc/self/uid_map
 0 3267 1
 1 100000 65536

This means the first rootless user-namespace container is running UID 0 mapped to
UID 1 in the rootless user namespace. UID 1 is the rootless UID 100000 on the host
system. A couple of problems with rootless users of --userns=auto is that since the
default user only gets 65,536 UIDS, at max, you can launch 64 containers, and you
cannot run any containers that require more than 65,536 UIDs.

NOTE If you launch a container without using the --userns=auto flag, the
UIDs mapped to the user namespace can and probably do overlap with the
UIDs in the user-namespaced isolated containers. You need to be careful that
none of the UIDs used within such containers use those UIDs because those
UIDs are vulnerable to attack from a UID perspective. To avoid overlaps, I
suggest using a high range of UIDs.

10.3.4 User volumes with the - -userns=auto flag

When using the user namespace, it is difficult to determine which user’s UID needs to
own the volume you’re mounting into a container to allow access. In the following
example, you first create a directory and then volume mount it into the container and
attempt to create a file in it.

20310.3 UID isolation: User namespace
mkdir /mnt/test
ls -ld /mnt/test
drwxr-xr-x. 2 root root 6 Feb 8 16:23 /mnt/test
podman run --rm -v /mnt/test:/mnt/test --userns=auto ubi8 ls -ld /mnt/test
drwxr-xr-x. 2 nobody nobody 6 Feb 8 21:23 /mnt/test
podman run --rm -v /mnt/test:/mnt/test:Z --userns=auto ubi8 touch /mnt/test
touch: setting times of '/mnt/test':

➥ Permission denied

Podman supports a special option on the --volume flag U, which tells Podman to
chown all files or directories in the source directory to match the UID of the con-
tainer’s primary process:

ls -ld /mnt/test
drwxr-xr-x. 2 root root 6 Feb 8 16:38 /mnt/test
podman run --rm -v /mnt/test:/mnt/test:Z,U

➥ --userns=auto ubi8 touch /mnt/test/test1
ls -ld /mnt/test
drwxr-xr-x. 2 2147503960 2147503960

➥ 19 Feb 8 16:38 /mnt/test

A new, advanced feature of the Linux kernel is called idmapped mounts. It allows users
to remap the UIDs inside a source volume to match the user namespace without actu-
ally chowning the files on disk. In the next example, you will recreate the /mnt/test
directory and, this time, mount it with the idmap option. When the ID-mapped vol-
ume shows up inside the container, the files appear to be owned by the root of the
user namespace, and you are allowed to read and write the files based on standard
permissions. When you finish writing the files, they are mapped back correctly into
the user namespace, unlike the U option, which writes them back based on the real
UID of the container process:

chown -R root:root /mnt/test
podman run --rm -v /mnt/test:/mnt/test:idmap,Z

➥ --userns=auto ubi8 ls -ld /mnt/test
drwxr-xr-x. 2 root root 31 Feb 9 11:56 /mnt/test
podman run --rm -v /mnt/test:/mnt/test:idmap,Z

➥ --userns=auto ubi8 touch /mnt/test/test
ls -l /mnt/test
total 0
-rw-r--r--. 1 root root 0 Feb 9 06:57 test
-rw-r--r--. 1 root root 0 Feb 8 17:02 test1

Listing 10.6 Drawbacks of using volumes within a user namespace

The directory is owned
by root on the host.

The directory is listed as the user nobody, since the
root UID=0 is not mapped into the user namespace.

All files and directories owned by UIDs not mapped
to the container are treated as the nobody user. The

:Z tells Podman to relabel for SELinux.

Even root is not allowed to write into a
directory of an unmapped user, unless
the directory is world writable.

After adding the U option,
processes within the container
can write to the volume.

Podman chowned the source volume
to 2147503960 to match the root user
mapping in the container.

Reset the source volume
to root ownership.

Mount the source volume /mnt/test
into the container with the idmap
option. Notice the path is owned
by root within the container.

Create a file within the source
directory to prove the container
can write to the directory.

Notice on the host system that
the newly created file is owned
by the real root.

204 CHAPTER 10 Security container isolation
NOTE The idmap features are brand new as of writing and are not available
on all filesystems. It is only supported in privileged mode at this time, but
hopefully, this changes soon. Currently, the OCI runtime that supports this
feature is crun.

Understanding the security benefits of running containers with user namespaces is
very important. Next, I’ll show you some security benefits in the other namespaces.

10.4 Process isolation: PID namespace
I often say that namespaces were not intended as a security mechanism, but in reality,
they do provide additional security via isolation and information masking. The PID
namespace hides the fact that there are other processes running on a system. Being
aware that a particular application is running on a system can be valuable to someone
hacking a container. When you run a container within its own PID namespace, it is
only able to see the other processes running within the container. By default, Podman
runs containers within their own PID namespaces.

 Some applications shipped as container images require additional access to the sys-
tem. If you have such an application that needs to monitor the processes on the host,
you’ll need to turn off the PID namespace to expose all the processes on the system.
Turning off the PID namespace with Podman is simple: just add the --pid=host flag.
In the next couple of examples, you see that with the PID namespace, you only see the
container process within the container. The second command exposes all processes
within the system to the container.

$ podman run --rm ubi8 find /proc -maxdepth 1

➥ -type d -regex ".*/[0-9]*"
/proc/1
$ podman run --rm --pid=host ubi8 find

➥ /proc -maxdepth 1 -type d -regex ".*/[0-9]*"
/proc/1
/proc/2
/proc/3
/proc/4
…

NOTE On an SELinux system, exposing the host’s processes via the --pid=host
option also has a side effect of disabling SELinux separation. SELinux blocks
access to the host’s processes and causes problems when processes within
the container interact with these processes. Other security mechanisms, like
dropped capabilities and user namespaces, are not dropped and can block
access to the processes.

Listing 10.7 The differences between using the pid namespace and disabling it

Running the find command looking
for all processes within the
container, you see only one process.

Running the find command
in a --pid=host container,
you see all of the processes
on the system.

20510.5 Network isolation: Network namespace
10.5 Network isolation: Network namespace
The network namespace sets up isolation from the host network. It allows Podman to
set up virtual private networks to control which containers can talk to other contain-
ers. Podman has the ability to create multiple networks and then assign containers
within those networks. By default, all containers run within the host network. But it is
simple to set up additional networks using the podman network create command. In
the next example, you will create two networks—net1 and net2:

$ podman network create net1
net1
$ podman network create net2
net2

When you create new containers, you can assign them to a specific network with the
--network net1 option:

$ podman run -d --network net1 --name

➥ cnet1 ubi8 sleep 1000
74ce5b2396f77fce8c499b121aeb8731f1e1b22e363a6a72d243487cf93a5897
$ podman run --network net1 alpine

➥ ping -c 1 cnet1
PING cnet1 (10.89.0.4): 56 data bytes
64 bytes from 10.89.0.4: seq=0 ttl=42 time=0.077 ms

If you attempt to ping the network from the default network namespace via the con-
tainer name, or even the IP address, it fails:

$ podman run --rm alpine ping -c 1 cnet1
ping: bad address 'cnet1'
$ podman run alpine ping -c 1 10.89.0.4
PING 10.89.0.4 (10.89.0.4): 56 data bytes
64 bytes from 10.89.0.4: seq=0 ttl=42 time=0.073 ms

Similarly, if you attempt to ping it from a different network, --network net2, it also fails:

$ podman run --rm --network net2 alpine ping -c 1 cnet1
ping: bad address 'cnet1'

Creating private networks for your containers allows you to isolate them from each
other, even over the network, using the network namespace.

NOTE For these examples, I used the alpine image because it comes with the
ping package installed, while the ubi8 image does not include it. You can eas-
ily add the ping executable to ubi8 via a Containerfile and podman build.

You can expose your host network to the container using the --net=host option,
allowing a container to bind to ports on the host. In certain situations, you can get bet-
ter performance when you eliminate the network namespace.

Start a background
container in network net1.

Make sure the container
is reachable from another
container within the network.

Make sure the cnet1
container is still available
by the IP address.

206 CHAPTER 10 Security container isolation
10.6 IPC isolation: IPC namespace
The inter-process communication (IPC) namespace isolates certain IPC resources,
namely, System V IPC objects and POSIX message queues. It also isolates the /dev/shm
tmpfs from the host and other containers. The IPC namespace allows containers to
create named IPCs with the same name as other containers on the same system, with-
out causing a conflict.

 Thus, IPC isolation prevents one container from attacking another via an IPC
or /dev/shm. You can join two IPC-namespaced containers together using the
--ipc=container:NAME or run them within a pod. They share the same IPC name-
space. They can use IPC together but are still isolated from the host.

$ podman run -d --rm --name ipc1 ubi8 bash

➥ -c "touch /dev/shm/ipc1; sleep 1000"
93df44264dd4b87d24f59dfffb92a6a0b6359bc5bcf94213d5e38499a10d3f3e
$ podman run --rm ubi8 ls /dev/shm
$ podman run --rm --ipc=container:ipc1 ubi8 ls /dev/shm
ipc1

You can share the host’s IPC namespace with your container by executing the
--ipc=host option.

NOTE On SELinux systems, Podman modifies all containers that share the
same IPC namespace to share the same SELinux label. Otherwise, SELinux
blocks the IPC communications between containers when the labels do not
match. Using the --ipc=host option causes SELinux separation to be dis-
abled; otherwise, SELinux blocks access to the host’s IPC.

10.7 Filesystem isolation: Mount namespace
The next, and perhaps most important, namespace isolation is the mount namespace.
The mount namespace hides the entire host filesystem from the container processes.
The container processes only see the filesystem content defined to be in the mount
namespace. Podman creates the filesystem mount point rootfs and bind mounts all
volumes onto it. Podman then executes the OCI runtime, which then executes the
pivot_root syscall, which in turn changes the root mount in the mount namespace of
the calling process. It moves the root mount to the rootfs directory. Thus, all of the
content of the host operating system disappears, and the container processes only see
the provided content. By dropping the CAP_SYS_ADMIN capability, the processes inside
the container have no ability to affect the mounts of the rootfs to expose the underly-
ing filesystems.

Listing 10.8 IPC namespace keeping /dev/shm private to each container

Create a container named ipc1, touch
/dev/shm/ipc1, and then go to sleep.

Run a second container to see that the
/dev/shm/ipc does not exist because the container
is running in a separate IPC namespace.

Run a container with a shared IPC
namespace, and you will see that the

/dev/shm is shared and the IPC file exists.

20710.8 Filesystem isolation: SELinux
NOTE Read the pivot_root(2) man page to find out more about the pivot_
root system call: man 2 pivot_root.

While the mount namespace and the lack of CAP_SYS_ADMIN provide excellent isola-
tion, there have been some container escapes to the underlying filesystem, which is
where SELinux steps in. One example of this was a flaw in the OCI runtime runc
(CVE-2019-5736), which allowed container processes to overwrite the runc executable
in rootful containers. This exploit allowed containers to escape their containment and
take over users’ systems. This exploit affected all container engines, including Pod-
man, Docker, CRI-O, and containerd. The good news is that well-configured SELinux
can stop it. Podman is mainly run in rootless mode, and rootless Podman is protected
in two ways: SELinux and not running as root. I wrote about this exploit in this “Latest
container exploit (runc) can be blocked by SELinux” blog post, available on Red
Hat’s website (http://mng.bz/Qn6j).

10.8 Filesystem isolation: SELinux
SELinux is a labeling system, where every process and filesystem object gets labeled.
Then rules are written to the kernel about how the process labels interact with the
filesystem labels as well as other process labels. SELinux supports multiple different
security mechanisms; containers take advantage of two of these. The first is called
type enforcement, with which SELinux controls what processes can do based on their
type. The second is called MCS enforcement, and it additionally uses categories assigned
to processes.

 SELinux is not supported on all distributions. Fedora, RHEL, and other Red Hat dis-
tributions support SELinux, while Debian-based distributions, like Ubuntu, often do not.
If your Linux distribution does not support SELinux, you might want to skip this section.

10.8.1 SELinux type enforcement

The SELinux labels have four components: the SELinux user, role, type, and MCS
level (see table 10.5).

Table 10.5 SELinux label type examples

Object User Role Type MCS level

Container process system_u system_r container_t s0:c1,c2

Container process system_u system_r container_t s0:c361,c871

Container file system_u object_r container_file_t s0:c1,c2

Container file system_u object_r container_file_t s0:s361,c871

/etc/shadow label system_u object_r shadow_t s0

Container process system_u system_r spc_t s0

User process unconfined_u unconfined_r unconfined_t s0-s0:c0.c1023

http://mng.bz/Qn6j

208 CHAPTER 10 Security container isolation
In this section, you will concentrate on the SELinux type. I wrote The SELinux Coloring
Book to explain the labeling, using the analogy of cats and dogs (figure 10.3).

As the coloring book explains, imagine you have a group of processes labeled as cat
types and another group of processes labeled as dog types. Imagine you also have
objects on the filesystem labeled as dog food type and cat food type. Finally, imagine
you write rules to the kernel saying that cat types are allowed to eat cat food types,
and dog types can eat dog food types. With SELinux, anything that is not explicitly
allowed is denied. The cat processes can eat the cat food, and the dog processes can
eat the dog food, but if a dog type attempts to eat cat food, the Linux kernel steps in
and blocks the access.

 Containers work the same way. Podman labels each container process with the
container_t type. All the files within the container are labeled as a container_file_t

Figure 10.3 The SELinux Coloring
Book (http://mng.bz/Xay6)

http://mng.bz/Xay6

20910.8 Filesystem isolation: SELinux
type. Rules are written into the kernel, saying the container_t processes are allowed
to read, write, and execute files labeled with the container_file_t type.

NOTE SELinux does not care about ownerships and permissions, so you can,
for example, define a process type that has access to all filesystem types and is
not confined by SELinux, often called an unconfined type. You can see a couple
of unconfined types running on your Linux system. The id -Z command
shows your user processes are running with the unconfined_t type and a priv-
ileged container runs with the spc_t type.

When Podman constructs the rootfs for the container, it labels all of the files in the
rootfs as container_file_t. This means the container process can read, write, and
execute all of the files within the container’s rootfs, but if they escape to the host
filesystem, the SELinux kernel blocks access to the host filesystem objects. In the next
few examples, you can examine what is happening in containers with SELinux. In
this first example, you can see the label of the containerized process; notice the type
is container_t. But when you run with the --privileged flag, Podman changes the
label to spc_t, an unconfined domain:

$ podman run --rm ubi8 cat /proc/self/attr/current
system_u:system_r:container_t:s0:c694,c944
$ podman run --rm --privileged ubi8 cat /proc/self/attr/current
unconfined_u:system_r:spc_t:s0

Examine the files within the container, using the ls -Z command. You see the files are
all labeled as container_file_t:

$ podman run --rm ubi8 ls -Z /
system_u:object_r:container_file_t:s0:c88,c191 bin
system_u:object_r:container_file_t:s0:c88,c191 boot
system_u:object_r:container_file_t:s0:c88,c191 dev
system_u:object_r:container_file_t:s0:c88,c191 etc
system_u:object_r:container_file_t:s0:c88,c191 home
system_u:object_r:container_file_t:s0:c88,c191 lib
…

Because Podman configured the SELinux environment properly, container processes
have full access to all of the objects within the container’s rootfs, and SELinux pretty
much stays out of the way, unless something else breaks down and somehow the con-
tainer process escapes out of the rootfs into the host operating system. At that point,
SELinux starts blocking access. Imagine the container process you are running on
your system broke out of the container and attempted to read the SSH keys in your
home directory. Let’s look at the labels on those files. You see that those files are
labeled with the ssh_home_t type:

$ ls -1Z $HOME/.ssh/
unconfined_u:object_r:ssh_home_t:s0 authorized_keys
unconfined_u:object_r:ssh_home_t:s0 authorized_keys2

210 CHAPTER 10 Security container isolation
unconfined_u:object_r:ssh_home_t:s0 config
…

Because there is no rule in SELinux policy allowing a container_t process to read an
ssh_home_t file, the SELinux kernel blocks access. You can demonstrate this by vol-
ume mounting the .ssh directory into a container. When you attempt to list the direc-
tory, the container process gets Permission denied:

$ podman run -v $HOME/.ssh:/.ssh ubi8 ls /.ssh
ls: cannot open directory '/.ssh': Permission denied

As you learned in section 3.1.2, Podman has SELinux volume options z and Z, which
tell SELinux to relabel the content of the source volume to make it usable inside of
the container. This is not a good idea to do with the .ssh directory.

 Instead, let’s create a temporary file and show the SELinux labels in action. First,
create a temporary file in your home directory named foo. Label it user_home_t. Vol-
ume mount it into the container, and see that the container process is denied access.

$ mkdir foo
$ ls -Zd foo
unconfined_u:object_r:user_home_t:s0 foo
$ podman run -v ./foo:/foo ubi8 touch /foo/bar
touch: cannot touch '/foo/bar': Permission denied
$ podman run --privileged -v ./foo:/foo ubi8 touch

➥ /foo/bar
$ ls -Z foo
unconfined_u:object_r:user_home_t:s0 bar
$ rm foo/bar
$ podman run -v ./foo:/foo:Z ubi8 touch /foo/bar
$ ls -Z ./foo
system_u:object_r:container_file_t:s0:c454,c510 bar

SELinux type enforcement has shown itself to be invaluable in blocking container
escape when no other mechanism was available. Table 10.6 shows a list of container
escapes that have been blocked by SELinux.

 SELinux type enforcement does a great job protecting the host operating system
from container processes. The problem is that type enforcement does not protect you
from one container attacking another.

Listing 10.9 How SELinux works with volumes inside Podman containers

Files created in your home directory
default to the user_home_t type. By default, container

processes are not allowed to
write to content in the user's
home directory. Podman
does not change the labels
on volumes by default.

The --privileged flag causes SELinux separation to be disabled, running
the container with an unconfined type (spc_t). The command simulates a
container escape, showing that without SELinux, an escaped container is
allowed to write to the filesystem.

The file created by the privileged
container has the label of the user
home directory (user_home_t).

The :Z option on the volume mount tells Podman to
relabel the content of the directory to match the
labels of files within the rootfs (container_file_t).

The labels of the newly
created file match the label
within the container.

21110.8 Filesystem isolation: SELinux
10.8.2 SELinux Multi-Category Security separation

SELinux does not block processes of one type from attacking other processes of the
same type. One way to think about this is going back to the cats and dogs analogy.
Type enforcement prevents the dog from eating the cat food, but it does not prevent
cat-A from eating cat-B’s cat food.

 Recall when I introduced this section, I said there were two types of SELinux secu-
rity Podman takes advantage of. SELinux has a mechanism to enforce process separa-
tion based on the Multi-Category Security (MCS) level field. SELinux defines 1,024
categories, which can be combined together to give a level to each container. Podman
allocates two categories for each container and then makes sure the process label level
matches the filesystem label levels. Then the SELinux kernel enforces the MCS levels
matching, or the access is denied.

NOTE MCS Separation is actually about dominance. Each category must
dominate the MCS level. A level of S0:C1,C2 can write to levels S0:C1,C2,
S0:C1, S0:C2, and S0. But the S0:C1,C2 is not allowed to write to S0:C1,C3,
since the original label does not include the C3. In practice, Podman only
uses two categories or no categories. When you use the :z option on a vol-
ume, Podman relabels the source directory with the level s0—no categories.
The s0 allows processes from any container to read and write filesystem
objects with this level, from an SELinux perspective.

Revisit table 10.4, but this time concentrate on the MCS level field (table 10.7).

Table 10.6 Major container exploits blocked by SELinux

Common vulnerabilities
and exposures

Description

CVE-2019-5736 Execution of malicious containers allows for container escape and access
to the host filesystem.

CVE-2015-3627 Insecure opening of file-descriptor 1, leading to privilege escalation

CVE-2015-3630 Read/write proc paths allow host modification and information disclosure.

CVE-2015-3631 Volume mounts allow Linux Security Modules (LSM) profile escalation.

CVE-2016-9962 runc exec vulnerability

Table 10.7 Container process labels, with MCS level highlighted

Object User Role Type MCS level

Container process system_u system_r container_t s0:c1,c2

Container process system_u system_r container_t s0:c361,c871

Container file system_u object_r container_file_t s0:c1,c2

Container file system_u object_r container_file_t s0:s361,c871

212 CHAPTER 10 Security container isolation

Now look at how MCS leveling works with Podman. If you run containers back to back
and examine the SELinux label, you notice that each container’s MCS level is unique:

$ podman run --rm ubi8 cat /proc/self/attr/current
System_u:system_r:container_t:s0:c648,c1009
$ podman run --rm ubi8 cat /proc/self/attr/current
system_u:system_r:container_t:s0:c393,c834

This MCS level prevents the processes from attacking each other. Recall that in sec-
tion 10.2.8, you created the foo/bar file with a container private label. If you volume
mount this file into another container and then try to write to the file, you get per-
mission denied.

$ ls -Z ./foo
system_u:object_r:container_file_t:s0:c454,c510 bar
$ podman run -v ./foo:/foo ubi8 touch /foo/bar
touch: cannot touch '/foo/bar': Permission denied
$ podman run --security-opt label=level:s0:c454,c510

➥ -v ./foo:/foo ubi8 touch /foo/bar

Recall that the Z volume option tells Podman to label the container private to the con-
tainer, while the z volume option tells Podman to label the container shared for all
containers. You can use this option if you have a directory you want to allow multiple
containers to use.

$ podman run -v ./foo:/foo:z ubi8 touch /foo/bar
$ ls -Z foo/
system_u:object_r:container_file_t:s0 bar
$ podman run --rm -v ./foo:/foo ubi8 touch /foo/bar

/etc/shadow label system_u object_r shadow_t s0

Container process system_u system_r spc_t s0

User process unconfined_u unconfined_r unconfined_t s0-s0:c0.c1023

Listing 10.10 SELinux preventing different containers from sharing a volume

Listing 10.11 Volume option z causing Podman to relabel volumes with a shared label

Table 10.7 Container process labels, with MCS level highlighted (continued)

Object User Role Type MCS level

The file foo/bar has a private
MCS level, which Podman does
not give to another container.

Other containers are not allowed
to access the foo/bar file based
on having a different MCS level.

If you force the container MCS
level to match the previous
container’s label, SELinux
allows the access.

The -v ./foo:/foo:z tells Podman
to label the volume as shared.

Podman uses the :s0 MCS level
because all containers are
allowed to write to it.

Other containers with
different MCS levels can
successfully modify the
content.

21310.9 System call isolation seccomp
NOTE SELinux has 1,024 categories, and Podman chooses two categories for
each container. Level s0:c1,c1 is not allowed. These categories must not
match, and the order is not important. Level s0:c1,c2 is the same as s0:c2,c1.
There are 1024 x 1024 ÷ 2 – 1024 = ~500,000 unique combinations available,
meaning you can create half a million unique containers on your system.

Sometimes it is necessary to disable SELinux container separation for your container.
For example, you might want to share your home directory within a container. It is a
bad idea to relabel your home directory with the Z or z options. Recall that when
relabeling volumes, they need to be private to the container. Relabeling the home
directory can cause other SELinux problems with other confined domains. You can
run the container with the --privileged flag, but you probably want the other secu-
rity mechanisms to still be enforced. To achieve this, you can use the --security-opt
label:disable flag:

$ podman run --rm --security-opt label=disable ubi8 cat

➥ /proc/self/attr/current
unconfined_u:system_r:spc_t:s0
$ podman run --rm -v $HOME/.ssh:/ssh --security-opt label=disable ubi8 ls /ssh
authorized_keys
authorized_keys2
config
fedora_rsa
fedora_rsa.pub
…

NOTE The udica project’s (https://github.com/containers/udica) goal is to
generate SELinux policies for containers. Basically, Udica examines a con-
tainer you have created via podman inspect and then writes a policy type that
allows access to the volumes you want to mount into the container.

SELinux is a very powerful tool for protecting the host operating system from the con-
tainers. It is easy to deal with for containers as long as you understand how to handle
volumes. Understanding how to protect the filesystem, it is time now to look at pro-
tecting the Linux kernel from potentially vulnerable system calls.

10.9 System call isolation seccomp
A system call, often called a syscall, is how a computer program requests a service from
the kernel of the operating system on which it is executed. Common syscalls are open,
read, write, fork, and exec. In Linux, there are over 700 system calls.

 Recall from the beginning of this chapter that the Linux kernel is the single point
of failure hostile containers can attack to escape confinement. If a bug exists in the
Linux kernel that can be attacked via a system call, the container processes might
escape. The Linux kernel feature seccomp allows processes to voluntarily limit the
number of system calls they and their children can make. Podman, by default, elimi-
nates hundreds of the system calls using this feature. Suppose the Linux kernel has a

https://github.com/containers/udica

214 CHAPTER 10 Security container isolation
flaw in one of its system calls, which a container process can use to escape, but Pod-
man eliminated it from the table of system calls available to the container. In that case,
the container is blocked from using it.

 Podman’s seccomp filters are stored as a JSON file in the /usr/share/contain-
ers/seccomp.json file. Podman also modifies the list of seccomp filters based on the
capabilities you allow to the container. When you add a capability, Podman adds the
system calls required for that capability. Capabilities and seccomp are both enforced
separately; Podman just tries to make it easier for the user. If the user provides their
own seccomp JSON file, it needs to be similar to the default one for the capability
modifications to work.

 You can modify the seccomp filter by editing this file. In the following example, you
remove the mkdir syscall from seccomp.json, and then run a container in which you try
to make a directory. The seccomp filter blocks the syscall, and your container fails.

$ sed '/mkdir/d' /usr/share/containers

➥ /seccomp.json > /tmp/seccomp.json
$ diff /usr/share/containers/seccomp.json/

➥ tmp/seccomp.json
249,250d248
< "mkdir",
< "mkdirat",
$ podman run --rm --security-opt seccomp=/

➥ tmp/seccomp.json ubi8 mkdir /foo
mkdir: cannot create directory '/foo': Function not implemented
$ podman run --rm ubi8 mkdir /foo

NOTE Not many people modify the seccomp filters because it is difficult to
figure out the number of system calls required by a container. There are tools
to generate this list of system calls using the Berkeley Packet Filter (BPF). The
package at the following webpage is a hook that monitors a container and
automatically generates a seccomp.json file to use later to lock down the con-
tainer: https://github.com/containers/oci-seccomp-bpf-hook/.

Sometimes the default container seccomp.json file is too tight. Your container might
not work because it needs a system call that is not available. In this case, you can dis-
able seccomp filtering by using the --security-opt seccomp=unconfined flag.

 As you see, system call filtering is powerful and can really limit the container pro-
cesses’ access to the host kernel. The next level is to use KVM isolation.

10.10 Virtual machine isolation
At the beginning of this chapter, I compared process isolation based on where the three
pigs chose to live. They could live in separate houses, a duplex, or a condominium.

Listing 10.12 How seccomp filters can block syscalls within a Podman container

Use the sed command to delete all
entries that make mkdir and create
/tmp/seccomp.json.

Use the diff command
to show the removed
mkdir entries.

Use the --security-opt seccomp=
/tmp/seccomp.json flag to use an
alternative seccomp filter; the mkdir
command fails because the mkdir
system call is not available.

Run the same command again
with a default filter to show the
mkdir succeeds.

https://github.com/containers/oci-seccomp-bpf-hook/

215Summary
Each one was getting slightly less secure. Container security, by default, is living in a
condo. But you can use VM isolation, which basically puts your container into a VM, to
get better isolation.

 In appendix B, I cover how different OCI runtimes, Kata and libkrun, take advan-
tage of Kernel-based Virtual Machine (KVM) to run their containers within a light-
weight virtual machine. These virtual machines run their own kernel and initialization
tools to launch the container. By doing this, almost all of the host kernels’ system calls
are eliminated, making it much more difficult to escape confinement.

 The problem with this isolation is that it comes at a cost. As with a duplex, you end
up sharing fewer services between your containers. Memory management, CPU, and
other resources are harder to share. Sharing volumes into a container is also going to
perform worse.

 Now you’ve finished examining Podman security features used for container isola-
tion. Next let’s look at other security features.

Summary
 Container security is all about protecting the Linux kernel and host filesystem

from hostile container processes.
 Defense in depth means your container tooling takes advantage of as many secu-

rity mechanisms as possible. If one security mechanism fails, others might still
protect your system.

Additional
security considerations
In this chapter, I review and demonstrate some additional security consider-
ations when using Podman to run containers. Some of the content was covered
in other chapters, but I think it is useful to concentrate on these features from a
security perspective.

 One of the most frequent problems I see with people running containers is that
when the container process is denied some access, the user’s first reaction is to run
the container in --privileged mode, which turns off all security separation for
your container. Understanding how to deal with the security features discussed in
this chapter helps you avoid this.

This chapter covers
 Securing running applications on different standalone

servers, inside different VMs and containers

 Running a container via a service versus as a child
of the container engine via fork and exec

 Linux security features used to keep containers
isolated from each other

 Setting up container image trust

 Signing images and trusting them
216

21711.1 Daemon versus the fork/exec model
11.1 Daemon versus the fork/exec model
Throughout the previous chapters, you have learned quite a bit about the problems of
a daemon like Docker versus the fork/exec model employed by Podman.

11.1.1 Access to the docker.sock

Recall that Docker, by default, runs a daemon owned by the root user. This means any
user who has access to the daemon can launch processes with full root access on the
system. Docker recommends some users put their accounts into the docker group in
the /etc/group. On some distributions, this allows you to access the /run/docker.sock
without being root:

ls -l /run/docker.sock
srw-rw----. 1 root docker 0 Jun 13 14:54 /run/docker.sock

You can run a Docker container similarly to how you have been running a Podman
container:

$ docker run registry.access.redhat.com/ubi8-micro echo hi
Unable to find image 'registry.access.redhat.com/ubi8-micro:latest' locally|
latest: Pulling from ubi8-micro
4f4fb700ef54: Pull complete
b6d5e0581b2f: Pull complete
Digest: sha256:a519ab06c0287085c352af0d2b84f2a2b257d2afb2e554b8d38a076cd6205b48
Status: Downloaded newer image for registry.access.redhat.com/
ubi8-micro:latest
hi

This excites a lot of users, until they understand they can also launch a root shell on
their system with a simple Docker command:

$ docker run -ti --name hack -v /:/host --privileged

➥ registry.access.redhat.com/ubi8-micro chroot /host
cat /etc/shadow
…

At this point, you have a fully privileged root shell on the host system, in which you
can hack the machine all you want. Not only that, but Docker defaults all logging to
being file based. When you are done hacking the system, you can remove the log files
and all records of your activity:

$ docker rm hack
hack

Using rootless Podman, you cannot do this, since when you run the container, the
container processes are run as your user UID and only have access to the same files as
any process in your account. One way administrators figure out if they have been
hacked is by examining the logging system, including the audit logs.

218 CHAPTER 11 Additional security considerations
11.1.2 Auditing and logging

One key feature of a Linux system is tracking what processes do when they are run-
ning on a system. When you log in to a Linux system, your UID is recorded by the ker-
nel into the process data in /proc/self/loginuid. You can see this data by executing
the following command:

$ cat /proc/self/loginuid
3267

All processes created by this first process after login maintain this field. Even if you use
a setuid program, like su or sudo, your loginuid stays the same:

$ sudo cat /proc/self/loginuid
3267

Even when you launch a container, the loginuid stays the same. In this next exam-
ple, you run a simple container in daemon mode that sleeps, then use podman
inspect to get the PID of the sleep processes, and finally examine the loginuid of
the containerized process:

$ podman run -d ubi8-micro sleep 20
1c55b9cfa0cd20c36da4b606415e190a6c20cc868d3486981c7713d41ee9ea6a
$ podman inspect -l --format '{{ .State.Pid }}'
119394
$ cat /proc/119394/loginuid
3267

Notice the containerized process is still running with your loginuid. This shows that
the kernel can track which user launched a container process on the system via this
field, as long as the container engine uses the fork/exec model. If you run this same
test with Docker, you get very different results:

$ docker run -d registry.access.redhat.com/ubi8-micro sleep 20
df2302cf8c6385df2b86ccd3429166e0d8dd0c9f0d0139e98e6354809a04080e
$ docker inspect df2302cf8c6 --format '{{ .State.Pid }}'
120022
$ cat /proc/120022/loginuid
4294967295

Instead of showing your loginuid, you see 4294967295, which is 232 – 1. This is how
the Linux kernel represents -1, the default loginuid for all processes started by the
system, not by users who logged into the system. The reason for this is that Docker
uses a client-server model, and the container process is a child of the Docker daemon
as opposed to the Docker client. Since the Docker daemon was launched by systemd
when the system booted up, all of its children processes have the -1 loginuid.

 The kernel’s audit subsystem records the loginuid of every process on the sys-
tem when it completes an auditable event. For example, when a user logs in and

21911.1 Daemon versus the fork/exec model
out of a system, these events are logged. Modifying /etc/passwd and /etc/shadow
are also loggable events.

 Following is the USER_START audit log entry for when I logged into my system
today. My UID 3267 is recorded along with my username:

ausearch -m USER_START
type=USER_START msg=audit(1651064687.963:315): pid=2579 uid=0 auid=3267

➥ ses=3 subj=system_u:system_r:xdm_t:s0-s0:c0.c1023 msg='op=PAM:session_open

➥ grantors=pam_selinux,pam_loginuid,pam_selinux,pam_keyinit,pam_namespace,

➥ pam_keyinit,pam_limits,pam_systemd,pam_unix,pam_gnome_keyring,pam_umask acct=

➥ "dwalsh" exe="/usr/libexec/gdm-session-worker" hostname=fedora addr=?

➥ terminal=/dev/tty2 res=success'UID="root" AUID="dwalsh"

If you launched the container by using a Podman command, then the audit subsystem
records your UID in the audit logs. If the container was launched via Docker, it
records -1 as the loginuid. Imagine your system was hacked via a container. You need
to go back and examine which user launched the container that hacked your system
via the audit.log.

 Let’s show an example of this. First, become root, and set up a watch on the
/etc/passwd file using auditctl:

auditctl -w /etc/passwd -p wa -k passwd

Now run a --privileged container using Docker, which touches the host’s /etc/
passwd file:

docker run --privileged -v /:/host registry.access.redhat.com/ubi8-

➥ micro:latest touch /host/etc/passwd

This simulated what would happen if a Docker container escaped confinement and
was able to modify the host’s /etc/passwd file. Now examine the audit.log, where
there should be a record of the /etc/passwd modification. Notice that the audit log
shows auid=unset. This is how the audit log represents the loginuid of the user that
modified the /etc/passwd file. As you can see, because no user launched the Docker
daemon directly, the audit log has no record of the user who launched the container:

ausearch -k passwd -i
…
type=SYSCALL msg=audit(05/03/2022 08:24:52.885:464) : arch=x86_64

➥ syscall=openat success=yes exit=3 a0=AT_FDCWD a1=0x7ffef7a9ef75

➥ a2=O_WRONLY|O_CREAT|O_NOCTTY|O_NONBLOCK a3=0x1b6 items=2 ppid=6723

➥ pid=6743 auid=unset uid=root gid=root euid=root suid=root fsuid=root

➥ egid=root sgid=root fsgid=root tty=(none) ses=unset comm=touch

➥ exe=/usr/bin/coreutils

Now run the same command with Podman:

podman run --privileged -v /:/host registry.access.redhat.com/

➥ ubi8-micro:latest touch /host/etc/passwd

220 CHAPTER 11 Additional security considerations
Examine the audit.log for the Podman container that modifies the /etc/passwd file,
and you see that auid=dwalsh. Because Podman follows the fork/exec model and was
launched by a user who logged into the system and had a record in the loginuid, the
audit.log can record which user launched a container that hacked the system:

ausearch -k passwd -i
…
type=SYSCALL msg=audit(05/03/2022 08:25:42.466:480) : arch=x86_64

➥ syscall=openat success=no exit=EACCES(Permission denied) a0=AT_FDCWD

➥ a1=0x7fff3d5aef59 a2=O_WRONLY|O_CREAT|O_NOCTTY|O_NONBLOCK a3=0x1b6

➥ items=2 ppid=6978 pid=6986 auid=dwalsh uid=root gid=root euid=root

➥ suid=root fsuid=root egid=root sgid=root fsgid=root tty=(none) ses=1

➥ comm=touch exe=/usr/bin/coreutils

➥ subj=system_u:system_r:container_t:s0:c484,c845 key=passwd

NOTE On current Fedora, the audit subsystem is disabled. You can enable it
by removing /etc/audit/rules.d/audit.rules and regenerating the audit
rules with the augenrules --load command.

This is one reason, back in 2014, I said access to the docker.sock via non-root pro-
cesses is more dangerous than giving out the root process or sudo access, since both of
those record the loginuid, meaning you can track what the user is doing on your sys-
tem. When you give access to the root running docker.sock, you have no tracking data.
Let’s look into how you can protect the kernel and the filesystem from processes run-
ning within a container in the next section.

11.2 Podman secret handling
Often, when running a container, you need to provide a secret to the service running
within the container. An example of this is a database tool that requires an administra-
tor and password to control access. Another example is a service that requires a pass-
word to reach another service.

 Developers of these applications do not want to hardcode the secret information
into the image. The user of the container application must provide the secret. You can
just provide the secret to the application via environment variables, but this means if
you commit the image, the secret gets committed to the image.

 Podman provides a secret mechanism, podman secret, which allows you to either
add files or environment variables to a container without these secrets getting saved
when you commit the container to an image. First, let’s look at creating a secret.

$ echo "This is my secret" > /tmp/secret
$ podman secret create my_secret /tmp/secret
b5f27b90e9b3486fb5a78d1eb
$ podman run --rm --secret my_secret ubi8 cat

Listing 11.1 Using secrets within a Podman container

Add your secret data to a file.

Use podman secret
create to name a secret
based on the file.

22111.3 Podman image trust
/run/secrets/my_secret
This is my secret

You can also leak the secret into the container as an environment variable by adding
the --secret my_secret,type=env flag:

$ podman run --secret my_secret,type=env --name secret_ctr ubi8 bash

➥ -c 'echo $my_secret'
This is my secret

If you were to commit this container to an image, the secret would not be saved inside
the image.

$ podman commit secret_ctr secret_img
Getting image source signatures
Copying blob a9820c2af00a skipped: already exists
Copying blob 3d5ecee9360e skipped: already exists
Copying blob dc409efbefc4 done
Copying config 501812299f done
Writing manifest to image destination
Storing signatures
501812299f0c0cfbb032d144e6d2c2a41c5eadf229e7b76f6264ab74d9f6c069
$ podman image inspect secret_img --format

➥ '{{ .Config.Env }}'
[TERM=xterm container=oci PATH=/usr/local/sbin:/usr/local/

➥ bin:/usr/sbin:/usr/bin:/sbin:/bin]

Table 11.1 lists all of the podman secret commands.

11.3 Podman image trust
In many situations, users of container images want to specify which container image
registries and images they trust. The podman image trust command allows you to
specify which registries you trust. It also allows you to specify registries to block.

Listing 11.2 The secret is not saved when the container is committed to the image.

Table 11.1 podman secret commands

Command Man page Description

create podman-secret-create(1) Create a new secret.

inspect podman-secret-inspect(1) Display detailed information on one or more secrets.

ls podman-secret-ls(1) List all available secrets.

rm podman-secret-rm(1) Remove one or more secrets.

Use the --secret option to leak
the secret into the container.

Commit the
secret_ctr into the
secret_img image.

Inspect the image to view the committed environment
variables, and notice the my_secret environment is not
committed.

222 CHAPTER 11 Additional security considerations
 The location of the trusted registry is determined by the transport and the registry
host of the image. Using this container image—docker://quay.io/podman/stable—as
an example, Docker is the transport, and quay.io is the registry host.

NOTE Podman image trust is not available in remote mode, for example, on a
Mac or Windows box. You have to execute the commands documented here on
a Linux box. If you are using the Podman machine, use the podman machine ssh
command to enter the VM. See appendixes E and F for more information.

The trust policy is defined in /etc/containers/policy.json, which describes a registry
scope (registry and/or repository) for the trust. The trust policy can use public keys
for signed images. The podman image trust command must be run as root.

 The scope of the trust is evaluated from the most specific to the least specific. In
other words, a policy may be defined for an entire registry. Or it can be defined for a
particular repository in that registry or defined down to a specific signed image inside
the registry. In the following example, you reject pulls from docker.io and then later
specify only docker.io/library images are allowed for pulling.

 The following list includes valid scope values that can be used in policy.json from
most specific to the least specific:

docker.io/library/busybox:notlatest
docker.io/library/busybox
docker.io/library
docker.io

If no configuration is found for any of these scopes, the default value (specified by
using default instead of REGISTRY[/REPOSITORY]) is used, as shown in the following
listing. Table 11.2 describes the valid trust values used for registries.

$ sudo podman image trust set -t reject docker.io
$ podman pull alpine
Trying to pull docker.io/library/alpine:latest…
Error: Source image rejected: Running image docker://alpine:latest

➥ is rejected by policy.
$ sudo podman image trust set -t accept

➥ docker.io/library
$ podman pull alpine
Trying to pull docker.io/library/alpine:latest…
Getting image source signatures
Copying blob 59bf1c3509f3 skipped: already exists
Copying config c059bfaa84 done
Writing manifest to image destination
Storing signatures
C059bfaa849c4d8e4aecaeb3a10c2d9b3d85f5165c66ad3a4d937758128c4d18
$ podman pull bitnami/nginx

Listing 11.3 Telling Podman to not pull images from a specific container registry

Use podman image trust to
reject all images from the

docker.io container registry.
Attempt to pull the alpine
image from the container
registry, and see that
Podman rejects the image.

Use Podman image trust to set a
more specific registry/repository
for docker.io/library.

Podman can pull the
docker.io/library/
alpine image.

Images pulled from
the rest of docker.io

are rejected.

22311.3 Podman image trust
Resolving "bitnami/nginx" using unqualified-search registries

➥ (/etc/containers/registries.conf.d/999-podman-machine.conf)
Trying to pull docker.io/bitnami/nginx:latest…
Error: Source image rejected: Running image docker://bitnami/nginx:latest

➥ is rejected by policy.

If you examine the policy.json file, you see the entries added by the podman image
trust command:

$ cat /etc/containers/policy.json
{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "transports": {
 "docker": {
 "docker.io": [
 {
 "type": "reject"
 }
],
 "docker.io/library": [
 {
 "type": "insecureAcceptAnything"
 }
]

…

You can use the podman image trust show command to show the current settings in an
easier-to-view form:

$ podman image trust show
all default accept
repository docker.io reject
repository docker.io/library accept

repository registry.access.redhat.com signed security@redhat.com
https://access.redhat.com/webassets/docker/content/sigstore
repository registry.redhat.io signed

➥ security@redhat.com https://registry.redhat.io/containers/sigstore
docker-daemon accept

Table 11.2 The trust type tells container engines like Podman which registries to trust.

Types Description

accept Images from the specified registry are allowed to be pulled.

reject Images from the specified registries are not allowed to be pulled.

signBy Images from the specified registries must be signed by the specified name.

224 CHAPTER 11 Additional security considerations
Through the accept and reject flags, you can set up which registries you trust and
which you reject. If you want to lock down where images on your production system
come from, you can change the default policy for your system to reject images from
any registry. All images you want to allow need to come from a specific registry:

$ sudo podman image trust set --type=reject default
$ podman image trust show
all default reject

repository docker.io reject

repository docker.io/library accept

repository registry.access.redhat.com signed security@redhat.com
https://access.redhat.com/webassets/docker/content/sigstore
repository registry.redhat.io signed

➥ security@redhat.com https://registry.redhat.io/containers/sigstore
docker-daemon accept

With these settings on your system, Podman accepts images from docker.io/library
and signed images from registry.redhat.io. All images from other registries are rejected.
Podman allows pulling of images directly from the docker-daemon as well.

 Don’t forget to restore the default policy.json:

$ sudo cp /tmp/policy.json /etc/containers/policy.json

Podman supports using signed images from container registries. Red Hat signs and
ships its images. Let’s look at how you, too, can sign images.

11.3.1 Podman image signing

One way of signing images is utilizing a GNU Privacy Guard (https://gnupg.org) key.
Podman can sign images before pushing them to remote registries, referred to as
simple signing. You can configure Podman and other container engines to require
images to be signed with a particular signature. All unsigned images are rejected.

 First, you need to create a GPG key pair or select a premade pair. You can gener-
ate new GPG keys by running gpg --full-gen-key and following the interactive dia-
log. Refer to the following web page for a description of creating keys: http://mng
.bz/JV9V.

 Following is an example of creating a simple key with default params. Make sure to
use your own email address:

$ gpg --batch --passphrase '' --quick-gen-key dwalsh@redhat.com default

➥ default

Most container registries do not understand image signing; they just provide the
remote storage for the container images. If you want to sign an image, you need to dis-
tribute the signatures yourself, usually using a web server. You can configure Podman
and other container engines to retrieve signatures from this web service.

http://mng.bz/JV9V
http://mng.bz/JV9V
http://mng.bz/JV9V
https://gnupg.org

22511.3 Podman image trust
 In the following examples, you will create a web service running on your local
machine to demonstrate image signing. Podman is able to push and sign the image in
a single command. Podman reads signature locations in the registries configuration
file /etc/containers/registries.d/default.yaml.

 Examine the default.yaml file to find the sigstore-staging flag and see the
default location where Podman stores signatures:

sigstore-staging: file:///var/lib/containers/sigstore

The sigstore-staging flag tells Podman to store signatures in the /var/lib/contain-
ers/sigstore directory. When you want other users to use these signatures to verify
your images, you need to put these images onto a web server. Now you are ready to test
out simple signing, first signing the ubi8 image and then setting up Podman to pull the
image using the signature to verify it.

SIGNING AND PUSHING THE IMAGE

Before starting this section, you should back up a couple of security files, so you can
restore them later:

$ sudo cp /etc/containers/registries.d/default.yaml

➥ /etc/containers/policy.json /tmp

Let’s pull an image from a registry and add a signature, then push it back to the registry.
Make sure to use your own registry account, image, and previously created GPG key:

$ sudo podman pull quay.io/rhatdan/myimage
Trying to pull quay.io/rhatdan/myimage:latest…
…
2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae
$ podman login quay.io/rhatdan
Username: rhatdan
Password:
Login Succeeded!
$ sudo -E GNUPGHOME=$HOME/.gnupg \
 podman push --tls-verify=false --sign-by dwalsh@redhat.com

➥ quay.io/rhatdan/myimage
…
Storing signatures

Look in the sigstore-staging directory /var/lib/containers/sigstore for the repository
name rhatdan. You will see that there is a new signature available, created by the pod-
man push command. Make sure to use your own registry account name:

$ sudo ls /var/lib/containers/sigstore/rhatdan/
'myimage@sha256=0460a9d13a806e124639b23e9d6ffa1e5773f7bef91469bee6ac88

➥ a4be213427'

Now that you have signed the image, you need to set up a web server to provide the
signature and configure Podman and other container engines to use the signatures
and signed images.

226 CHAPTER 11 Additional security considerations
CONFIGURING PODMAN TO PULL SIGNED IMAGES

When configuring Podman to use signatures to verify images, you need to configure
the system to retrieve the signatures. Usually, you share signatures on a web service.
You can do this by configuring the sigstore flag in the /etc/containers/regis-
tries.d/default.yaml file to identify the website that stores signatures. Podman down-
loads these signatures from this website.

 For this example, you will create a web service running on localhost at port 8000.
Add the sigstore: http://localhost:8000 web server to the default.yaml file. This
will tell Podman to retrieve signatures from this web server when pulling images. Pod-
man looks for a signature based on the name of the image along with its digest:

$ echo " sigstore: http://localhost:8000" | sudo tee --append

➥ /etc/containers/registries.d/default.yaml

For this example, start a new server using python3 inside the local staging signature
store /var/lib/containers/sigstore:

$ cd /var/lib/containers/sigstore && python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

In another window, remove quay.io/rhatdan/myimage from local storage, since you
want to pull with the signatures:

$ podman rmi quay.io/rhatdan/myimage
Untagged: quay.io/rhatdan/myimage:latest
Deleted: 2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae

You need to set up image trust for the quay.io/rhatdan repository and assign the pub-
lickey.gpg public key to use when verifying images signed by dwalsh@redhat.com:

$ sudo podman image trust set -f /tmp/publickey.gpg quay.io/rhatdan

The previous Podman command adds the following stanza to the /etc/containers/
policy.json file:

...
"transports": {
 "docker": {
 "quay.io/rhatdan": [
 {
 "type": "signedBy",
 "keyType": "GPGKeys",
 "keyPath": "/tmp/publickey.gpg"
 }
],
...

22711.3 Podman image trust
You have not created the keyPath file /tmp/publickey.gpg yet. Create it using the fol-
lowing GPG command:

$ gpg --output /tmp/publickey.gpg --armor --export dwalsh@redhat.com

Now you can pull the signed image:

$ podman pull quay.io/rhatdan/myimage
Trying to pull quay.io/rhatdan/myimage:latest…
…
Writing manifest to image destination
Storing signatures
2c7e43d880382561ebae3fa06c7a1442d0da2912786d09ea9baaef87f73c29ae

It worked! Still, you are not really sure if it used signatures. Prove it to yourself by
attempting to pull another image from the repository, which you don’t have signa-
tures for, and it will fail:

$ podman pull quay.io/rhatdan/podman
Trying to pull quay.io/rhatdan/podman:latest…
Error: Source image rejected: A signature was required,

➥ but no signature exists

Make sure to restore all settings back to default:

$ sudo cp /tmp/default.yaml /etc/containers/registries.d/default.yaml
$ sudo cp /tmp/policy.json /etc/containers/policy.json

Also, stop the localhost web server started in another terminal. Table 11.3 describes
the infrastructure you need to set up to allow simple signing to be used within your
environment.

Once you have the infrastructure set up to use simple signing, you will need to know
the requirements of each client that uses and verifies the signatures. Table 11.4 lists
each of these requirements.

Table 11.3 Infrastructure required for simple signing

Requirements Description

GPG private key You need a GPG key pair, where the private key is used on the service that
signs the images.

Signature web server A web server has to run somewhere that has access to the signature storage.

Table 11.4 Client configuration required for simple signing

Requirements Description

GPG public key
(/tmp/publickey.gpg)

The public GPG key used for signing must be present on any machine
that pulls the signed images.

228 CHAPTER 11 Additional security considerations
11.4 Podman image scanning
Podman is not an image scanner; it leaves this to other tools. But Podman does have a
nice feature that makes it easier for a scanner to scan an image. Podman can directly
mount an image that can be scanned. Scanners look at the mounted content of an
image without having to execute any of the code in the image. Recall that you cannot
mount containers or images in rootless mode, without first entering the user name-
spaces. Execute the podman image mount command to show the error:

$ podman image mount ubi8
Error: cannot run command "podman image mount" in rootless mode, must

➥ execute `podman unshare` first

In this next example, you first use podman unshare to enter the user namespace, and
then you mount the ubi8 image. Finally, change the directory to the mount directory,
and run a find command to locate all of the setuid binaries in the image. Notice that
you use tools from the host operating system to scan the image:

$ podman unshare
podman image mount
mnt=$(podman image mount ubi8)
echo $mnt
/home/dwalsh/.local/share/containers/storage/overlay/05ddfb76c5eb2146646c70

➥ e20db21a35dfec2215f130ce8bd04fce530142cfbd/merged
cd $mnt
/usr/bin/find . -user root -perm -4000
./usr/libexec/dbus-1/dbus-daemon-launch-helper
./usr/bin/chage
./usr/bin/mount
./usr/bin/umount
./usr/bin/newgrp
./usr/bin/gpasswd
./usr/bin/passwd
./usr/bin/su
./usr/sbin/userhelper
./usr/sbin/unix_chkpwd
./usr/sbin/pam_timestamp_check

Scanning an image with tools within the image is not safe, since a hacker of the image
can modify the scanning tools. Podman makes it easy for scanners to do their jobs.

Client’s sigstore configured The signature web server has to be configured as a sigstore in a
/etc/containers/registries.d/*.yaml file on all systems, which need
to pull the signed images.

Client’s image trust configured Image trust has to be configured on every container engine system
that uses the images.

Table 11.4 Client configuration required for simple signing (continued)

Requirements Description

22911.5 Security in depth
11.4.1 Read-only containers

I often talk about containers in production versus containers in development. When a
containerized application is in development, it is useful to be able to write to the con-
tainer image and potentially commit that image later. Although this is somewhat com-
mon, most people switch to using Containerfiles when it comes to actually building
images. The bottom line is once developers hand off their software to quality engi-
neering, they expect content to be treated as read only.

 When running a container in production, I believe it makes sense to run the image
in read-only mode. Imagine you are running an application that gets hacked. The first
thing the hacker wants to do is to write the backdoor into the application; then, the
next time the container or application starts, the container has the exploit in place. If
the image was read only, the hacker is prevented from leaving a backdoor in place and
is forced to start the cycle from the beginning.

 The --read-only option prevents applications from writing content to the image and
forces applications to only write content to either tmpfs filesystems or volumes added to
the container. Sometimes you might want to block the container from writing anywhere
on your system and only read or execute code within the container. Another benefit of
running containers in read-only mode is that you catch errors where you did not know
the container was writing to the image. Finally, writing on top of a copy-on-write filesys-
tem, like overlayfs, is almost always slower than writing to a volume or a tmpfs:

$ podman run --read-only ubi8 touch /foo
touch: cannot touch '/foo': Read-only file system

One problem with running in rootless mode is that applications often expect to write
to /run, /tmp, and /var/tmp. Podman manages this by automatically mounting tmpfs
filesystems at those locations:

$ podman run --read-only ubi8 touch /run/foo

Because some users believe allowing any places for a containerized application to
write, even on tmpfs mounts, is too insecure, Podman added a --read-only-tmpfs
option. The --read-only-tmpfs option adds the /run, /tmp, and /var/tmp tmpfs
when run in --read-only mode. If you want to disable this, you can use the –-read-
only-tmpfs=false flag:

$ podman run --read-only-tmpfs=false --read-only ubi8 touch /run/foo
touch: cannot touch '/run/foo': Read-only file system

11.5 Security in depth
In the security field, there is a common idea of security in depth. According to this
notion, multiple layers or tools should be used to safeguard assets. The classic analogy
for this is the security of an ancient castle, which would usually be built high on a hill,

230 CHAPTER 11 Additional security considerations
have multiple walls, have moats, and have even more security features. An attacker
would need to break through all of these layers to get to the ruler.

 Container security works in much the same way. Podman uses all of the security
mechanisms provided by Linux, giving you security in depth.

11.5.1 Podman uses all security mechanisms simultaneously

Podman containers can run with all of the security mechanisms mentioned in this
chapter. This means a hacked container needs to find a way to escape read-only filesys-
tems, namespaces, dropped capabilities, SELinux, seccomp, and so on to gain access
to your system.

 In certain cases, you might need to loosen some security mechanisms to allow a
container to run. Understanding how to deal with the security features discussed in
this chapter is always better than just running your containers with the --privileged
flag, which turns off all of your defenses.

 Podman shoots for a reasonable amount of security wrapping for containers, but it
needs to allow general-purpose containers to succeed. Understanding your container
application’s security requirements and the Podman security features allows you to
ratchet up the security wrapping of your containers. If you know your container does
not need to run as root, don’t start it as root. If your container does not need any
Linux capabilities, drop them. Rootless containers are better than rootful containers.
Consider also running containers in read-only mode or inside of separated user name-
spaces. You have the ability to make your castle walls thicker around your containerized
applications by simply employing these measures.

11.5.2 Where should you run your containers?

I’ll leave you with one final thought. At the beginning of this chapter, I talked about
the three pigs living in different types of shelters—standalone houses, duplexes, and
condominium buildings—each slightly less secure than the last. Container security
can do better than the pigs living in individual housing units, in that the units can be
stacked together.

 Imagine you had two different containers: a web frontend and a database with
credit card data. If you wanted to make sure they were separate, you could put them
together on the system inside containers or, better yet, put them in containers but put
them into separate VMs, and then, finally, put the VMs on separate machines. You
would be able to put your web frontend into a machine running a VM inside of a con-
tainer inside of your DMZ exposed to the internet. You could do all this while putting
your database inside of your private network, without limited network access to your
web frontends. The possibilities are nearly endless.

231Summary
Summary
 Container security has many different facets, including separation of running

containers, trusting the images and registries, scanning the images, and so on.
 Defense in depth means your container tooling takes advantage of as many

security mechanisms as possible. If one security mechanism fails, the others might
still protect your system.

 Container security is all about protecting the Linux kernel and host filesystem
from hostile container processes.

 Setting up and controlling the container images you run on your systems is crit-
ical. Do not allow your users to run random applications from the internet.

appendix A
Podman-related
container tools

This appendix describes the three tools that use containers/storage and contain-
ers/image libraries. These tools address the following functionalities:

 Moving container images between different container registries and storage
 Building container images
 Testing, developing, and running containers in production on a single node
 Running containers in production at scale

As the original creator of Podman, I recognized the need for specialized tools, each
performing specific functionality rather than a one-size-fits-all monolithic solution.

 From a security perspective, each of these four categories requires different
security constraints. Containers running in production need to be run in a more
secure environment than ones running in development and testing. Moving con-
tainer images between registries requires no privileged access to the host you are
running the command on—only remote access to the registries. You will have the
least secure system with a monolithic daemon. If my containers need more access
during builds, then in production, they get the same access as during builds.

 Another critical problem with a monolithic daemon is that it prevents experi-
mentation with the tools and doesn’t allow them to go their own way. One example
of this is when we proposed a change to the Docker daemon to allow users to pull
different types of OCI content off of container registries. This change was denied,
as it had little to do with Docker containers.

 Similarly, when the monolithic daemon is modified for one product, it can neg-
atively affect features of another one using that daemon. It could cause perfor-
mance degradation or complete breakage. This happened when Kubernetes was
232

233APPENDIX A Podman-related container tools
being developed, since it relied on the Docker daemon as the container engine. But
since Docker is monolithic and being developed for many other projects, many of its
changes affected Kubernetes, leading to instability. It was obvious that Kubernetes
needed a dedicated container engine for its workloads, and in December 2020 it was
announced that Kubernetes will eventually use the newly developed standard, the
Container Runtime Interface (CRI; see http://mng.bz/yaDq) to improve interaction
between orchestrators and different container runtimes. I wrote a coloring book, The
Container Commandos (figure A.1; https://red.ht/3gfVlHF), illustrated by Máirín Duffy
(@marin), describing the container tools talked about in this appendix, based on
superheroes.

Finally, sometimes there are conflicting interests or release schedules in play. Having
separate, independent tools allows releases to be deployed independently from all the
others at their own pace to guarantee new features to their customers. Four projects
were created for the distinct functions described in table A.1.

 As you have already learned a great deal about Podman, you know now why it is
included in this list. Podman is an excellent tool for understanding and developing

Figure A.1
The Container Coloring Book
(https://red.ht/3gfVlHF)

http://mng.bz/yaDq
https://red.ht/3gfVlHF
https://red.ht/3gfVlHF

234 APPENDIX A Podman-related container tools
containers as well as pods and images. It encapsulates everything Docker CLI does but
without locking everything under one central daemon. Because Podman works with-
out a daemon and uses the operating system for sharing data, other tools can work
with the same data stores and libraries. The rest of this appendix describes the rest of
the tools, starting with Skopeo (figure A.2).

Table A.1 Primary container tools based on containers/storage and containers/image.

Tool Description

Skopeo Performs various operations on container images and image repositories (https://
github.com/containers/skopeo)

Buildah Facilitates a wide range of operations on container images (https://github.com/
containers/buildah)

Podman All-in-one management tool for pods, containers, and images (https://github.com/
containers/podman)

CRI-O OCI-based implementation of the Kubernetes Container Runtime Interface (https://
github.com/cri-o/cri-o)

Container registry

Skopeo uses a containers/image
library to download container
images.

Skopeo stores the
downloaded images, using the
containers/storage library, into
local storage.

Container image

storage

Container host

Buildah uses the
image downloaded
by Skopeo as a base
image and creates a
new image.

Podman runs a
container based on
the image Buildah
built.

Figure A.2 Skopeo, Buildah, and Podman work together by sharing the same containers/storage images and
containers/image library for pulling and pushing images.

https://github.com/containers/skopeo
https://github.com/containers/skopeo
https://github.com/containers/buildah
https://github.com/containers/buildah
https://github.com/containers/podman
https://github.com/containers/podman
https://github.com/cri-o/cri-o
https://github.com/cri-o/cri-o

235A.1 Skopeo
A.1 Skopeo
While using container engines like Docker or Podman, if you want to inspect a con-
tainer image in a registry, you are required to pull this image from the registry to your
local storage. Only then can you examine it. The problem is that this image can be
huge, and after inspecting it, you might realize it wasn’t what you expected, and you
wasted time pulling it. Because the protocol used to pull the image and inspect it is
just a web protocol, a simple tool, Skopeo, was created to pull the image’s detailed
information and display it on the screen. Skopeo is the Greek word for remote viewing.

Execute the following skopeo inspect command to examine an image’s detailed infor-
mation in JSON form:

$ skopeo inspect docker:/ /quay.io/rhatdan/myimage
{
 "Name": "quay.io/rhatdan/myimage",
 "Digest":
"sha256:fe798c1576dc7b70d7de3b3ab7c72cd22300b061921f052279d88729708092d8",
 "RepoTags": [
 "Latest",
 "1.0"
],
…

Skopeo was extended to also copy images off of registries. Eventually, Skopeo became
the tool for copying images between different types of storage (transports). These
types of storage became the transports defined in table A.2.

Table A.2 Podman-supported transports

Transport Description

Container registry
(docker)

This is the default transport. It references a container image stored in a remote
container image registry website. Registries store and share container images
(e.g., docker.io and quay.io).

oci References a container image; compliant with the Open Container Initiative
Format specification. The manifest and layer tarballs are located in the local
directory as individual files.

dir References a container image; compliant with the Docker image layout. It is
very similar to the oci transport but stores the files using the legacy Docker
format. As a non-standardized format, it is primarily useful for debugging or
noninvasive container inspection.

236 APPENDIX A Podman-related container tools
Other container engines and tools wanted to use the functionality developed in Sko-
peo to copy images, so Skopeo was split in two: the command line, Skopeo, and the
underlying library, containers/image. Splitting functionality into a separate library
made it possible to build other container tools, including Podman.

 The skopeo copy command is very popular for copying images between different
types of container storage. One difference compared to Podman and Buildah, as you’ll
see in section A.2, is that Skopeo forces users to specify the transport for the source and
destination. Podman and Buildah default to using the docker or containers-storage
transport, depending on the context and command. In the following example, you
will copy an image from a container registry using the docker transport and store the
image locally using the container-storage transport:

$ skopeo copy docker:/ /quay.io/rhatdan/myimage containers-storage:quay.io/
rhatdan/myimage

Getting image source signatures
Copying blob dfd8c625d022 done
Copying blob 68e8857e6dcb done
Copying blob e21480a19686 done
Copying blob fbfcc23454c6 done
Copying blob 3f412c5136dd done
Copying config 2c7e43d880 done
Writing manifest to image destination
Storing signatures

Another command many Skopeo users use is skopeo sync, which lets you synchronize
images between container registries and local storage.

 Skopeo is mainly used for infrastructure projects to help provision multiple con-
tainer registries—for example, copying images from a public registry to a private one.
Table A.3 describes the most popular commands used with Skopeo. One of the first
tools to take advantage of the containers/image library was Buildah.

docker-archive References a container image in a Docker image layout, which is packed into a
TAR archive.

oci-archive References an image compliant with the Open Container Initiative Format spec-
ification, which is packed into a TAR archive. It is very similar to the docker-
archive transport but stores an image in OCI format.

docker-daemon References an image stored in the Docker daemon’s internal storage. Since the
Docker daemon requires root privileges, Podman has to be run by the root user.

container-
storage

References an image located in a local container storage. It is not a transport
but more of a mechanism for storing images. It can be used to convert other
transports into container-storage. Podman defaults to using
container-storage for local images.

Table A.2 Podman-supported transports (continued)

Transport Description

237A.2 Buildah
A.2 Buildah
As you learned in section 1.1.2, creating a container image means creating a directory
on disk and adding content to it to make it look like the root, /, directory on a Linux
machine, called a rootfs. Originally, the only way to do this was with docker build,
using a Dockerfile. While Dockerfiles and Containerfiles are excellent ways of creat-
ing recipes for your container images, a low-level building block tool that allowed
other ways to build container images was needed—one that allowed breaking the
image-build process into individual commands, letting you use other more powerful
scripting tools and languages than Containerfile to build images. We created a tool
called Buildah (https://buildah.io) to serve this purpose.

Buildah was designed to be that simple tool for building container images. It’s built
on top of the container/storage and container/image libraries, just like Podman and
Skopeo. It has a lot of functionality similar to Podman. You can pull images, push
images, commit images, and even run containers on images. What mainly differenti-
ates Podman from Buildah is the underlying concept of a container. A Podman con-
tainer is a long-lived one, a running container, while a Buildah container is just a
temporary one, a working container, which will be used to create an OCI image.

NOTE Buildah is a Linux-only tool, not available on Mac or Windows. How-
ever, Podman embeds Buildah in the podman build command. Podman on

Table A.3 Primary Skopeo commands and their description

Command Description

skopeo copy Copy an image (manifest, filesystem layers, or signatures) from one loca-
tion to another.

skopeo delete Mark the image name for later deletion by the registry’s garbage collector.

skopeo inspect Return low-level information about an image name in a registry.

skopeo list-tags List tags in the transport-specific image repository.

skopeo login Log in to a container registry (the same as podman login).

skopeo logout Log out of a container registry (the same as podman logout).

skopeo manifest
digest

Compute a manifest digest for a manifest file, and write it to standard
output.

skopeo sync Synchronize images between container registries and local directories.

https://buildah.io

238 APPENDIX A Podman-related container tools
Mac and Windows uses the Buildah code on the server side, allowing those
platforms to build using Containerfiles and Dockerfiles. See appendixes E
and F for more information.

Buildah was designed to take the steps defined in a Dockerfile and make them avail-
able at the command line. Buildah wanted to simplify building a container image by
allowing you to use all of the tools available within the OS to populate the image. You
can add data to this directory via standard Linux tools, like cp, make, yum install, and
so on. Then commit the rootfs into a tarball, add some JSON to describe what the cre-
ator of the image wanted the image to do, and finally, push this to a container registry.
Basically, Buildah breaks down the steps you learned about in a Containerfile into
individual commands you can execute from a shell.

NOTE The name Buildah is a play on the way I pronounce builder. If you ever
heard me speak, you’d notice I have a strong Boston accent. When the core
team asked what I wanted to call the tool, I said, “I don’t care, just call it
builder.” And they heard Buildah.

The first step when building a new container image is pulling a base image. In a Con-
tainerfile, this is done with the FROM instruction.

A.2.1 Creating a working container from a base image

The first command to look at is buildah from. It is equivalent to the Containerfile’s
FROM instruction. When executing buildah from IMAGE, it pulls the specified image
from the container registry, saves it in a local container storage, and creates a work-
ing container based on this image. As mentioned previously, this container is similar
to a Podman container, except it exists temporarily only to become a container
image. In the following example, a working container is created based on an ubi8-
init image.

$ buildah from ubi8-init
Resolved "ubi8-init" as an alias (/etc/containers/registries.conf.d/

➥ 000-shortnames.conf)
Trying to pull registry.access.redhat.com/

➥ ubi8-init:latest…
Getting image source signatures
Checking if image destination supports signatures
Copying blob adffa6963146 done
Copying blob 29250971c1d2 done
Copying blob 26f1167feaf7 done
Copying config 4b85030f92 done
Writing manifest to image destination
Storing signatures
ubi8-init-working-container

Listing A.1 Buildah pulling an image and creating a Buildah container

Pulls the image
from the container
registry

Outputs a new
container name

239A.2 Buildah
Notice that the buildah from output looks the same as the podman pull output, except
for the last line, which outputs the container name: ubi8-init-working-container. If
you run the buildah from command again, you get a second container name:

$ buildah from ubi8-init
ubi8-init-working-container-1

Buildah keeps track of its containers and generates each one by incrementing a
counter. Of course you can override the container name with the --name option.
Next, you will add content to this container image.

A.2.2 Adding data to a working container

Buildah has two commands, buildah copy and buildah add, for copying the contents
of a file, URL, or directory into the container’s working directory. They map to the
same functionality as the Containerfile’s COPY and ADD instructions.

NOTE It is somewhat confusing to have two commands that do almost the
same thing. In most cases, I recommend you just use buildah copy and COPY
inside a Containerfile. The main difference between the two is that COPY only
copies local files and directories off of the host into the container image. The
add command supports the use of URLs to pull remote content and insert it
into your container. The ADD command also supports taking TAR and ZIP
files and expanding them when copied into the container image.

The syntax of the buildah copy command requires you to specify the name of the
container previously created by the buildah from command, followed by the source
and, optionally, destination. If the destination is not provided, source data will be cop-
ied into the container’s working directory. The destination directory will be created if
it doesn’t exist yet.

 The following example copies the local html/index.html file (created previously
in section 3.1) into the /var/lib/www/html directory in the container:

$ buildah copy ubi8-init-working-container html/index.html

➥ /var/lib/www/html/

If you would like to use more advanced tools like package managers to add content to
your containers, Buildah supports running commands inside the containers.

A.2.3 Running commands in a working container

To run a command inside the working container, you need to execute buildah run.
Under the hood, this command works exactly the same as the RUN instruction; it starts
a new container on top of the current one, executes a specified command, and com-
mits the result back to the working container. The syntax of buildah run requires you
to specify the name of the working container followed by the command. In the follow-
ing example, you install the httpd service within the container:

240 APPENDIX A Podman-related container tools
$ buildah run ubi8-init-working-container dnf -y install httpd
Updating Subscription Management repositories.
Unable to read consumer identity
This system is not registered with an entitlement server. You can use

➥ subscription-manager to register.
…
Complete!

To make sure you will have a running web server once the running container is cre-
ated, the next command enables the Apache HTTP Server service:

$ buildah run ubi8-init-working-container systemctl enable httpd.service
Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service ?

➥ /usr/lib/systemd/system/httpd.service.

Table A.4 shows the relationship between Containerfile instructions and Buildah
commands.

A.2.4 Adding content to a working container directly from the host

Up until now, you’ve seen how Buildah can perform the same commands you execute
within a Containerfile, but one of Buildah’s goals is exposing the container image
rootfs directly to the host. This allows you to use commands available on your host
machine to add content to the container image, without requiring the commands to
be present inside the container image.

 The buildah mount command allows you to mount a working container’s root
filesystem directly on your system and then use tools like cp, make, dnf, or even an edi-
tor to manipulate the contents of the container’s rootfs.

 If you run Buildah as root, you can simply execute the buildah mount command.
But in rootless mode, this isn’t allowed. Recall from section 2.2.10, where you learned
about the podman mount command, that you must first enter the user namespace. Sim-
ilarly, the buildah unshare command creates a shell running in the user namespace.
Once you are in the user namespace, you can mount the container. In the following
example, using what you have learned so far, you will use commands from your host’s
operating system grep to add content to the container:

Table A.4 Containerfile instructions mapped to Buildah commands

Instruction Command Description

ADD buildah add Add the contents of a file, URL, or directory to the container.

COPY buildah copy Copies the contents of a file, URL, or directory into a container’s
working directory.

FROM buildah from Creates a new working container, either from scratch or using a
specified image as a starting point.

RUN buildah run Runs a command inside the container.

241A.2 Buildah
$ buildah unshare
mnt=$(buildah mount ubi8-init-working-container)
echo $mnt
/home/dwalsh/.local/share/containers/storage/overlay/133e1728eac26589b07984

➥ e3bdf31b5e318159940c866d9e0493a1d08e1d2f6a/merged
grep dwalsh /etc/passwd >> $mnt/etc/passwd
exit

Now you can check if your changes were actually applied inside a working container:

$ buildah run ubi8-init-working-container grep dwalsh /etc/passwd
dwalsh:x:3267:3267:Daniel J Walsh:/home/dwalsh:/bin/bash

After you are done populating the content of the working container, it’s time to spec-
ify other instructions from the Containerfile. These will describe your intentions as
the container image creator.

A.2.5 Configuring a working container

You probably noticed in table A.3 that there are a lot of missing Containerfile instruc-
tions. Containerfile instructions like LABEL, EXPOSE, WORKDIR, CMD, and ENTRYPOINT are
used to populate the OCI image specification.

 Now, using the buildah config command, you can add a port to expose (EXPOSE)
and mark a location inside the container rootfs as a volume (VOLUME), which will be
used as the website root directory:

$ buildah config --port=80 --volume=/var/lib/www/html

➥ ubi8-init-working-container

You can inspect the corresponding OCI image specification fields using the buildah
inspect command:

$ buildah inspect --format '{{ .OCIv1.Config.ExposedPorts }} {{

➥ .OCIv1.Config.Volumes }}' ubi8-init-working-container
map[80:{}] map[/var/lib/www/html:{}]

Table A.4 shows the relationship between Containerfile instructions and Buildah
config options. You can also refer to table A.5 for additional information on these
instructions.

Table A.5 Containerfile instructions mapped to Buildah config options

Instruction Option Description

MAINTAINER --author Sets contact information of the image author

CMD --cmd Sets a default command to run within a container

ENTRYPOINT --entrypoint Sets a command for a container that will run as an executable

ENV --env Sets the environment variable for all subsequent instructions

242 APPENDIX A Podman-related container tools
Once you have finished adding content to the Buildah container image and adding
configuration to the OCI image specification, you need to create an image from the
working container.

A.2.6 Creating an image from a working container

The working container you’ve been building so far can be used to create the OCI-
compliant image using the buildah commit command. This command works in the
same way as the podman commit command you learned about in section 2.1.9. Inputs
for this command are the working container name and an optional image tag; if a tag
is not specified, the image will have no name:

$ buildah commit ubi8-init-working-container quay.io/rhatdan/myimage2
Getting image source signatures
Copying blob 352ba846236b skipped: already exists
Copying blob 3ba8c926eef9 skipped: already exists
Copying blob 421971707f97 skipped: already exists
Copying blob 9ff25f020d5a done
Copying config 5e47dbd9b7 done
Writing manifest to image destination
Storing signatures
5e47dbd9b7b7a43dd29f3e8a477cce355e42c019bb63626c0a8feffae56fcbf9

You can see the image using buildah images:

$ buildah images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage2 latest 5e47dbd9b7b7 2 minutes ago 293 MB
registry.access.redhat

➥ .com/ubi8-init latest 4b85030f924b 5 weeks ago 253 MB

HEALTHCHECK --healthcheck Specifies a command to check if a container is still running

LABEL --label Adds key-value metadata

ONBUILD --onbuild Sets a command to be run when the image is used as the
base for another image

EXPOSE --port Specifies a port that the container will listen on at run time

STOPSIGNAL --stop-signal Sets the stop signal to be sent when the container is stopped

USER --user Sets the user to be used when running the container and for
all subsequent RUN, CMD, and ENTRYPOINT instructions

VOLUME --volume Adds a mount point and marks it as a volume for external data

WORKDIR --workingdir Sets the working directory for all subsequent RUN, CMD,
ENTRYPOINT, COPY, and ADD instructions

Table A.5 Containerfile instructions mapped to Buildah config options (continued)

Instruction Option Description

243A.2 Buildah
Because Podman and Buildah share the same container image storage, you can see
the same images with podman images:

$ podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/rhatdan/myimage2 latest 5e47dbd9b7b7 4 minutes ago 293 MB
registry.access.redhat

➥ .com/ubi8-init latest 4b85030f924b 5 weeks ago 253 MB

You can even run a Podman container on the image:

$ podman run quay.io/rhatdan/myimage2 grep dwalsh /etc/passwd
dwalsh:x:3267:3267:Daniel J Walsh:/home/dwalsh:/bin/bash

A.2.7 Pushing an image to a container registry

Similarly to Podman, Buildah has the buildah login and buildah push commands,
which allow you to push images to container registries, as shown in the following
example:

$ buildah login quay.io
Username: rhatdan
Password:
Login Succeeded!
$ buildah push quay.io/rhatdan/myimage2
Getting image source signatures
Copying blob 3ba8c926eef9 done
Copying blob 421971707f97 done
Copying blob 9ff25f020d5a done
Copying blob 352ba846236b done
Copying config 5e47dbd9b7 done
Writing manifest to image destination
Copying config 5e47dbd9b7 done
Writing manifest to image destination
Storing signatures

NOTE You can also use podman login and podman push or even skopeo login
and skopeo copy to accomplish the same task.

Congratulations! You have successfully built an OCI-compliant container image man-
ually by using simple shell commands rather than using a Containerfile. Additionally,
if you want to create an image using an existing Containerfile or Dockerfile, you can
use the buildah build command.

A.2.8 Building an image from Containerfiles

You can use the buildah build command to build an OCI-compliant image from a Con-
tainerfile or a Dockerfile. Buildah includes a parser that understands the Containerfile

244 APPENDIX A Podman-related container tools
format and can perform all tasks using previously described commands automatically.
In the next example, use the Containerfile from section 2.3.2:

$ cat myapp/Containerfile
FROM ubi8/httpd-24
COPY index.html /var/www/html/index.html

You can build your container image using this Containerfile by executing the follow-
ing command:

$ buildah build ./myapp
STEP 1/2: FROM ubi8/httpd-24
Resolved "ubi8/httpd-24" as an alias (/home/dwalsh/.cache/containers/

➥ short-name-aliases.conf)
Trying to pull registry.access.redhat.com/ubi8/httpd-24:latest
…
Getting image source signatures
Checking if image destination supports signatures
Copying blob adffa6963146 skipped: already exists
…
STEP 2/2: COPY html/index.html /var/www/html/index.html
COMMIT
Getting image source signatures
Copying blob 352ba846236b skipped: already exists
…
bbfcf76c994c738f8496c1f274bd009ddbc960334b59a74953691fff00442417

You’ve probably noticed that this output matches precisely the output of the podman
build command. This is because the podman build command uses Buildah.

A.2.9 Buildah as a library

Buildah was designed to not only be used as a command-line tool but also to be a
Golang-based library. Buildah is being used in a few different tools, such as Podman and
the OpenShift image builder. Buildah allows these tools to internally build OCI images.
Every time you do a podman build, you are executing the Buildah library code. Having
learned how to build container images using Buildah, copy images between container
storages using Skopeo, and manage and run containers on the host using Podman, let’s
talk about how all these tools are used in the Kubernetes ecosystem.

A.3 CRI-O: Container Runtime Interface for OCI containers
When Kubernetes was being developed, it used the Docker API internally to run con-
tainers. Kubernetes relied on features of Docker that changed from release to release,
sometimes breaking Kubernetes. At the same time, CoreOS wanted their alternative
container engine, called RKT (https://github.com/rkt/rkt), to work with Kubernetes.
Kubernetes developers decided, then, to split out the Docker functionality and use a
new API called the Container Runtime Interface (CRI; http://mng.bz/yaDq). This
interface allows Kubernetes to use other container engines in addition to Docker.

https://github.com/rkt/rkt
http://mng.bz/yaDq

245A.3 CRI-O: Container Runtime Interface for OCI containers
 When Kubernetes wants to pull a container image, it calls out to a remote socket
via the CRI and asks the listener to pull an OCI image for it. When it wants to launch a
Pod/Container, it calls out to the socket and asks it to launch the container.

NOTE CoreOS was eventually acquired by Red Hat, and the RKT project has
ended. Kubernetes has deprecated Docker as a container runtime.

Red Hat saw the CRI as an opportunity to develop a new container engine, which they
ended up calling the Container Runtime Interface for OCI containers (CRI-O; https://
cri-o.io/). CRI-O is based on the same containers/storage and containers/image librar-
ies as Skopeo, Buildah, and Podman and can be used in conjunction with these tools.
CRI-O’s primary objective is replacing the Docker service as the container engine for
Kubernetes.

CRI-O is tied to Kubernetes releases. When a new version of Kubernetes is released,
the version numbers are synchronized. CRI-O is optimized for Kubernetes workloads;
the engineers working on it understand what Kubernetes is trying to do and are mak-
ing sure CRI-O does it in the most efficient way possible. Since CRI-O has no other
users, Kubernetes doesn’t have to worry about breaking changes in CRI-O.

NOTE CRI-O is the core technology used with Red Hat’s OpenShift Kubernetes-
based product. OpenShift uses Podman to install and configure CRI-O before
Kubernetes starts running. The OpenShift image builder embeds Buildah func-
tionality to allow users to build images within their OpenShift clusters.

https://cri-o.io/
https://cri-o.io/

appendix B
OCI runtimes

This appendix describes the primary OCI runtimes used with container engines
like Podman. As discussed in chapter 1, the OCI runtime (https://opencontainers
.org) is the executable launched by container engines, including Podman, used to
configure the Linux kernel and subsystems to run the kernel; its last step is launch-
ing the container. The OCI runtime reads the OCI runtime specification JSON file
and then configures the namespaces, security controls, and cgroups and eventually
starts the container process (figure B.1).

 In this appendix, you’ll learn the four main OCI runtimes in use. The --runtime
option allows you to switch between different OCI runtimes. In the next example,
you will run the same container command twice, each time with a different run-
time. In the first command, you run the container with a runtime, crun, defined
in the containers.conf, so you don’t need to specify the path to the runtime.

$ podman --runtime crun run --rm ubi8 echo hi
hi

The default runtime is defined under the [containers] table in the containers.conf
file on the Linux machine.

$ grep -iA 3 "Default OCI Runtime" /usr/share/containers/containers.conf
Default OCI runtime
#
#runtime = "crun"

Listing B.1 Podman running with the alternate OCI runtime crun

Listing B.2 Modifying the default OCI runtime

The --runtime option tells
Podman to use the crun OCI

runtime, rather than the default.

Podman defaults to crun on most systems; on
some older distributions, like Red Hat Enterprise
Linux, Podman defaults to runc.
246

https://opencontainers.org/
https://opencontainers.org/
https://opencontainers.org/

247APPENDIX B OCI runtimes
In the second example, you use the full path of the OCI runtime, /usr/bin/runc:

$ podman --runtime /usr/bin/runc run –rm ubi8 echo hi
hi

If you want to permanently change the default OCI runtime, you can set the runtime
option in the [engine] table in the containers.conf file in your home directory:

$ cat > ~/.config/containers/containers.conf << EOF
[engine]
runtime="runc"
EOF
$ podman --help | grep -- runc
 --runtime stringPath to the OCI-compatible binary used to run containers.

(default "runc")`

OCI

runtime

Container

Podman

(engine)

conmon

The OCI untime readsr
the runtime specification
Podman provides. It then
configures the kernel
before finally executing
the container command.

Container host
Linux

kernel
Figure B.1 Podman executes
the OCI runtime to launch the
container.

248 APPENDIX B OCI runtimes
NOTE The --runtime option is only available on Linux. podman --remote,
and therefore Podman, on Mac and Windows, does not support the --runtime
option, so you need to set the containers.conf file on the server side.

See the podman(1) man page for more information: man podman.
 OCI runtimes are continuously being developed and experimented with. You can

expect innovation to happen in this space going forward. The first container runtime
developed, and the de facto standard, is runc.

B.1 runc
runc is the original OCI runtime (https://github.com/opencontainers/runc). When
the OCI originally formed, Docker donated runc to the OCI to serve as the default
implementation of an OCI runtime. The OCI continues to support and develop runc.
It is written in Golang and also includes the libcontainer library, which is used in many
container engines and Kubernetes.

 The runc website states that runc, and all of the OCI runtimes, is a low-level tool
not designed to be used directly by the end user. It is recommended to be launched by
container engines like Podman or Docker.

 Recall that the container engine’s job is pulling the container images to the host,
configuring and mounting the root filesystem (rootfs) to be used within the container,
and, finally, writing the OCI runtime JSON file before launching the OCI runtime.

 The OCI runtime specification describes only the content of the JSON file used by
OCI runtimes. Because every OCI engine supports the runc command line, the other
OCI runtimes adopted the same CLI commands and options. This makes it easier for
one runtime to replace another when launched by the container engine. Table B.1
shows the commands supported by runc and therefore all OCI runtimes.

Table B.1 runc commands

Command Description

checkpoint Checkpoints a running container

create Creates a container

delete Deletes any resources held by the container often used with detached containers

events Displays container events, such as OOM notifications, CPU, memory, and IO usage
statistics

init Initializes the namespaces and launches the process

kill Sends the specified signal (default: SIGTERM) to the container’s init process

List Lists containers started by runc with the given root

pause Suspends all processes inside the container

ps Displays the processes running inside a container

https://github.com/opencontainers/runc

249B.2 crun
runc continues to be developed and has a very active community. The problem with
runc is that it is written in Golang. Golang was not designed to be a small, often-
executed application that needs to start quickly and fork/exec a command and exit
quickly. Fork/exec is a heavy operation in Golang, and although runc attempts to
work around this, it ultimately sacrifices a bit of performance. The a bit can accumu-
late over time though, so crun performs much better at scale.

B.2 crun
runc, being written in Golang, is a very heavy executable—12 megabytes in size. Gol-
ang is a great language, but it doesn’t take advantage of shared libraries. Golang exe-
cutables take up considerably more memory because of this. The size of runc causes it
to be somewhat slower loading during container start. Another problem with Golang
is that it does not support the fork/exec model all that well; it is slower than fork/exec
in other languages (e.g., C). This lack of speed is more important when you are start-
ing and stopping hundreds or thousands of containers—for example, on a Kuberne-
tes cluster. Container engines like Podman, also written in Go, generally run for a
much longer time, so the startup time is not as important. OCI runtimes like runc exe-
cute for a very short time and exit quickly.

 Giuseppe Scrivano, a contributor to runc and Podman, understood these deficien-
cies in runc and wanted to write a compatible OCI runtime in the C language. He cre-
ated a very lightweight OCI runtime called crun.

 crun describes itself as “a fast and lightweight OCI runtime.” (https://github.com/
containers/crun) It supports all of the same commands and options as runc, and the
crun executable is many times smaller than runc. Execute the du -s command to com-
pare sizes:

$ du -s /usr/bin/runc /usr/bin/crun
14640 /usr/bin/runc
392 /usr/bin/crun

restore Restores a container from a previous checkpoint

resume Resumes all processes that have been previously paused

run Creates and runs a container

spec Creates a new specification file

start Executes the user-defined process in a created container

state Outputs the state of a container

update Updates container resource constraints

Table B.1 runc commands (continued)

Command Description

https://github.com/containers/crun
https://github.com/containers/crun

250 APPENDIX B OCI runtimes
crun, being written in C, supports fork and exec much better than Golang and, there-
fore, is much quicker when launching a container.

 This also makes it plug in easily to other libraries on the system, and there is
some experimentation on using crun as a library for processing the OCI runtime
JSON file and launching different types of containers (e.g., WASM and Windows
containers on Linux). crun also has potential for launching KVM-separated contain-
ers based on libkrun.

 crun is now the default OCI runtime used by Podman in Fedora and in Red Hat
Enterprise Linux 9. runc continues to be supported and is the default OCI runtime in
Red Hat Enterprise Linux 8.

 crun and runc are the two primary OCI runtimes for managing traditional con-
tainers that use namespace separation. Both these projects work fairly closely together.
When bugs or problems are found in either OCI runtime, they are quickly fixed in
both. See the crun(1) man page for more information: man crun.

B.3 Kata

OCI runtimes are also written to use VM separation, with the primary example of this
being Kata Containers. The Kata Container project (https://katacontainers.io) adver-
tises itself as the following: “The speed of containers, the security of VMs. Kata Containers is
an open source container runtime, building lightweight virtual machines that seamlessly plug
into the container’s ecosystem.”

 Kata containers use VM technology for launching each container, which is very dif-
ferent from launching a VM and running Podman within it. A standard VM has an init
system, which launches all sorts of services, like logging systems, cron, and more. On
the other hand, a Kata container launches a micro OS, which runs only the container
and its support services (figure B.2). As its only purpose is launching the container,
when the container exits, this VM goes away.

 I believe running containers within VM/hypervisor separation gives you better
security separation than traditional container separation, where containers communi-
cate directly with the host kernel. A VM-separated container has to first break out of
containment inside of the VM, then find a way to break out of the hypervisor—only
then to face attacking the host kernel.

 While VM-separated containers are more secure, this does come with some down-
sides. There is a decent amount of overhead in starting a Kata container, configur-
ing the hypervisor, launching the kernel and other processes within the VM, and then

https://katacontainers.io

251B.3 Kata
finally the container. The VM’s memory, CPU, and so on have to be preallocated
and are difficult to change. Running Kata within a VM in the cloud is often not
allowed, or is at least more expensive, because most of the cloud vendors frown on
nested virtualization.

 Finally, and most importantly, VM-separated containers by their very nature have
difficulties sharing content with other containers and the host operating system. The
biggest problem is with volumes.

 While sharing content with the host machine in traditional containers is just a bind
mount, in VM-separate containers, bind mounts do not work. Since the processes on the
host and in the container are running with two different kernels, you need a network
protocol to share content. Kata containers originally used NFS and Plan 9 networked
filesystems. Reading/writing data over these networked filesystems is considerably
slower than native filesystem reads and writes you get with a bind mount.

Dedicated kernel
separate from
the host kernel used
for the container.

The only exposure to the host
OS kernel is the hypervisor,
providing excellent isolation.

The VM launches
an agent as
an init process,
which launches
and monitors
the container.

Agent

Container image
The container image is
shared from the host
into the VM to be used
by the container.

Volumes from the host need
to be shared into the VM using
network protocols, which can
be slow.

Application

OS dependencies

Kernel space

Hypervisor

Containers and support
processes for containers are
the only processes running
within the VM.

Virtual machine

Figure B.2 Kata containers launches a lightweight VM, which only runs the container.

252 APPENDIX B OCI runtimes
 Virtiofs is a new filesystem that has the properties of a network filesystem but allows
VMs to access files on the host. It is able to show major improvements in speed over
the network-based filesystems, while still remaining under heavy development.

 Kata containers have two ways to be launched. Kata traditionally has an OCI com-
mand line, kata-runtime, based on the runc command supported by Podman. You
can see the paths defined in containers.conf, on the Linux machine, by searching for
#kata:

$ grep -A 9 '^#kata' /usr/share/containers/containers.conf
#kata = [
"/usr/bin/kata-runtime",
"/usr/sbin/kata-runtime",
"/usr/local/bin/kata-runtime",
"/usr/local/sbin/kata-runtime",
"/sbin/kata-runtime",
"/bin/kata-runtime",
"/usr/bin/kata-qemu",
"/usr/bin/kata-fc",
#]

The bottom line on Kata containers is that you get better security with a performance
overhead. You can choose between these OCI runtimes with your workload’s needs in
mind.

B.4 gVisor

The last OCI runtime I cover in this appendix is gVisor (https://gvisor.dev/). The
gVisor website advertises itself as “an application kernel for containers that provides
efficient defense-in-depth anywhere.”

 gVisor includes an OCI runtime called runsc and works with Podman and other
container engines. The gVisor project calls itself an application kernel, written in
Golang, that implements a substantial portion of the Linux system call interface. It
provides an additional layer of isolation between running applications and the host
operating system. Google engineering wrote the original versions of gVisor and claims
that the bulk of the containers Google Cloud run use the gVisor OCI runtime.

 gVisor is somewhat similar to VM-isolated containers in that gVisor intercepts
almost all system calls from within the container and then processes them. gVisor
describes itself as an application kernel for containers written in Golang, limiting the
access to the host kernel. At the same time, it does not have the same problem of a
nested virtualization as Kata.

https://gvisor.dev/

253B.4 gVisor
 However, gVisor introduces a performance penalty with additional CPU cycles and
higher memory usage. This may introduce increased latency, reduced throughput, or
both. gVisor is also an independent implementation of the system call surface, mean-
ing many of the subsystems or specific calls are not as optimized as more mature
implementations.

appendix C
Getting Podman

Podman is a great tool for working with containers, but how do you get it installed
on your system? What packages are required to make it work? This appendix covers
installing or building Podman on your system.

C.1 Installing Podman
Podman is available for almost all Linux distributions via their package managers.
It is also available on Mac, Windows, and FreeBSD platforms. The official podman.io
site, https://podman.io/getting-started/installation, is regularly updated with new
instructions on how to install Podman for different distributions. Most of the con-
tent in this appendix originates from the podman.io site, as seen in figure C.1.

C.1.1 macOS

Because Podman is a tool for running Linux containers, you can use it on a macOS
desktop only if you have access to a Linux box, running either locally or remotely.
To make this process somewhat easier, Podman includes a command, podman
machine, to automatically manage VMs.

HOMEBREW

The Mac client is available through Homebrew (https://brew.sh/):

$ brew install podman

Podman has the ability to install a VM and run a Linux instance on your machine
using the podman machine command. On a Mac, you must execute the following
commands to install and start the Linux VM to successfully run containers locally:

$ podman machine init
$ podman machine start
254

https://podman.io/getting-started/installation
https://brew.sh/

255C.1 Installing Podman
Optionally, you can use the podman system connection command to set up SSH con-
nections to remote Linux machines running the Podman service.

 You can then verify the installation information using

$ podman info

The Podman command is running natively on the Mac but communicating with an
instance of Podman running within the VM.

C.1.2 Windows

Because Podman is a tool for running Linux containers, you can use it on a Windows
desktop only if you have access to a Linux box, running either locally or remotely. On
Windows, Podman can also utilize the Windows Subsystem for Linux system.

WINDOWS REMOTE CLIENT

You can retrieve the latest Windows Remote client on the https://github.com/
containers/podman/releases site.

Figure C.1 Podman installation instructions website

https://github.com/containers/podman/releases
https://github.com/containers/podman/releases
https://github.com/containers/podman/releases

256 APPENDIX C Getting Podman
 Once installed, you can configure the Windows Remote client to connect to a
Linux server using the podman system connection command. You can find out more
about this process at http://mng.bz/M0Kn.

WINDOWS SUBSYSTEM FOR LINUX (WSL) 2.0
See Windows documentation on installing WSL 2.0, and then pick a distribution that
includes Podman, including many described below. Alternatively, the podman machine
init command can bootstrap it all for you by automatically installing and configuring
WSL, downloading and provisioning Fedora Core VM on it, and creating correspond-
ing SSH connections for the Podman remote client.

NOTE WSL 1.0 is not supported.

C.1.3 Arch Linux and Manjaro Linux

Arch Linux and Manjaro Linux use the pacman tool to install software:

$ sudo pacman -S podman

C.1.4 CentOS

Podman is available in the default Extras repos for CentOS 7 and in the AppStream
repo for CentOS 8 and Stream:

$ sudo yum -y install podman

C.1.5 Debian

The podman package is available in the Debian 11 (bullseye) repositories and later:

$ sudo apt-get -y install podman

C.1.6 Fedora

$ sudo dnf -y install podman

C.1.7 Fedora-CoreOS, Fedora Silverblue

Podman comes preinstalled on these distributions. There is no need to need to install it.

C.1.8 Gentoo
$ sudo emerge app-emulation/podman

C.1.9 OpenEmbedded

BitBake recipes for Podman and its dependencies are available in the meta-virtualization
layer (http://mng.bz/aPzB). Add the layer to your OpenEmbedded build environ-
ment, and build Podman using

$ bitbake podman

http://mng.bz/aPzB
http://mng.bz/M0Kn

257C.2 Building from source code
C.1.10 openSUSE

sudo zypper install podman

C.1.11 openSUSE Kubic

The openSUSE Kubic distribution has Podman built in. There is no need to need to
install it.

C.1.12 Raspberry Pi OS arm64

The Raspberry Pi OS uses the standard Debian repositories, so it is fully compatible
with Debian’s arm64 repository:

$ sudo apt-get -y install podman

C.1.13 Red Hat Enterprise Linux

RHEL7
Make sure you have a RHEL7 subscription, then enable the extras channel and install
Podman:

$ sudo subscription-manager repos --enable=rhel-7-server-extras-rpms
$ sudo yum -y install podman

NOTE RHEL7 is no longer receiving updates to the Podman package except
for security fixes.

RHEL8
Podman is included in the container-tools module along with Buildah and Skopeo:

$ sudo yum module enable -y container-tools:rhel8
$ sudo yum module install -y container-tools:rhel8

RHEL9 (AND BEYOND)
$ sudo yum install podman

C.1.14 Ubuntu

The podman package is available in the official repositories for Ubuntu 20.10 and
newer:

$ sudo apt-get -y update
$ sudo apt-get -y install podman

C.2 Building from source code
I usually advise people to get the packaged versions of Podman because successfully
running Podman on Linux requires having additional tools installed, such as conmon
(container monitor), containernetworking-plugins (network configuration), and
containers-common (general configuration). While the process of building Podman

258 APPENDIX C Getting Podman
from the source code is not very complicated, the list of dependencies differs from
one Linux distribution to another. You can always check the latest instructions on the
following Podman page: http://mng.bz/gRDE.

C.3 Podman Desktop
There is also a GUI, Podman Desktop, for browsing, managing, and inspecting con-
tainers and images from different container engines, available at https://github.com/
containers/podman-desktop. Podman Desktop offers the capability to connect to
multiple engines at the same time and provides a unified interface. This is a relatively
new project under heavy development, so expect some rough edges.

 To provide some background, in September 2021, Docker Inc. announced they
will begin charging for the previously free version of Docker Desktop on macOS. The
Docker announcement has caused many people to switch and look for a replacement.

Summary
 Podman is a tool for running Linux containers, so it runs only on Linux.
 Podman is available in default package repositories of most major Linux distri-

butions.
 Podman is available as a remote client on Mac and Windows, which connects to

either a local or remote Linux box.
 Podman provides a special command for Linux VM management on macOS

and Windows.
 Podman can be built from source code, but it requires many other tools to run

successfully.
 Podman Desktop is an alternative for the popular Docker Desktop.

http://mng.bz/gRDE
https://github.com/containers/podman-desktop
https://github.com/containers/podman-desktop

appendix D
Contributing to Podman

My favorite thing about open source is the community effort. It is great to be able
to contribute to a project and, better yet, get people to contribute to your project.
The analogy I like to use comes from the Grimms’ Fairy Tales story “The Elves”
(https://sites.pitt.edu/~dash/grimm039.html):

A shoemaker, through no fault of his own, had become so poor that he had only leather
enough for a single pair of shoes. He cut them out one evening, then went to bed,
intending to finish them the next morning. Having a clear conscience, he went to bed
peacefully, commended himself to God, and fell asleep. The next morning, after saying
his prayers, he was about to return to his work when he found the shoes on his
workbench, completely finished.

The story goes on to describe a couple of elves that come by each night and finish
the shoes. I see this as the way open source works. Basically, the people doing little
contributions, bug reporting, bug fixes, document fixes, feature requests, and pub-
licizing the project are all the elves. Sometimes I even go to bed, and when I wake
up I’ll find someone has fixed the problem I was attempting to deal with the night
before! And sometimes the elves grow up to be maintainers. Some small contribu-
tions over time grow, and these developers end up being core members of the Pod-
man team. Some we even hired.

D.1 Joining the community
Each small change helps make the project better. When I talk to college students
about open source, I tell them about the unique opportunities they have, which
were not around when I was a student. They can make a contribution to a software
project or product and then list it on their resume. When interviewing a student
for an internship or a job, having a few github.com contributions on a resume is
very impressive.
259

https://sites.pitt.edu/~dash/grimm039.html

260 APPENDIX D Contributing to Podman
 Podman and its underlying technologies are always looking for new contributions
(figure D.1). No contribution is too small—from a spelling mistake in a man page up
to a full-blown feature. You don’t have to be a software developer to contribute. We
are always looking for help on documentation, web design for podman.io, as well as
software help. Many great ideas come from users of the product. Just reporting a bug
or reporting what you don’t like can lead to fresh ideas that improve the project. I
often ask people who have set up complicated environments using Podman to blog
about it, so others can learn.

Podman is an inclusive community, as are all of the github.com/containers projects.
The code of conduct statement for the containers project at http://mng.bz/5mEB
states the following:

As contributors and maintainers of the projects under the https://github.com/containers
repository, and in the interest of fostering an open and welcoming community, we pledge to
respect all people who contribute through reporting problems, posting feature requests,
updating documentation, submitting pull requests or patches, and other activities to any of
the projects under the containers umbrella.

Figure D.1 Podman’s Community page (https://podman.io/community)

http://mng.bz/5mEB
https://github.com/containers
https://podman.io/community

261D.2 Podman on github.com
D.2 Podman on github.com
Issues, discussions, and pull requests reside on the github.com/containers/podman
repository (figure D.2). As of this writing, the project has over 1,200 forks and 12,000
stars. The bottom line is it is a very active project.

You can also communicate directly with the core maintainers on IRC on the #podman
channel on libera.chat. The IRC channel is also linked to #podman:matrix.org
(https://matrix.to/#/#podman:matrix.org) on Matrix and the Podman Discord
(https://discord.com/invite/x5GzFF6QH4) for web access.

 There is also a low-volume mailing list you can join by sending an email to pod-
man-join@lists.podman.io. Finally, you can follow @podman_io on Twitter or follow
me @rhatdan.

Figure D.2 Podman’s github page (github.com/containers/podman)

https://matrix.to/#/#podman:matrix.org
http://github.com/containers/podman
http://github.com/containers/podman
https://discord.com/invite/x5GzFF6QH4

appendix E
Podman on macOS

Podman is a tool for launching Linux containers. Linux containers require a Linux
kernel. As much as I’d love to convince the world to move to the Linux Desktop
like I use, most users work on macOS and Windows operating systems—perhaps
even you. If you use the Linux Desktop, hooray! And if you don’t use a macOS
machine, feel free to skip this appendix.

 Because you did not skip this appendix, I’ll assume you want to create Linux
containers without having to ssh into a Linux box. You likely want to use native
software development tools and keep development local.

 One way to achieve this would be running Podman as a service on a Linux box
and using the podman --remote command to communicate with this service. Podman
provides the podman system connection command to configure how Podman com-
municates with a Linux box. However, the problem with this approach is that it is a

This appendix covers
 Installing Podman on macOS

 Using the podman machine init command to
download a VM with a Podman service installed

 Using the podman command to communicate
with the Podman service running in the VM

 Starting or stopping the VM with the podman
machine start/stop commands
262

263E.1 Using podman machine
meticulous process and requires a number of manual steps. Please refer to this web
page for an updated tutorial on this process: http://mng.bz/69ro.

 A better way would be using a new command, podman machine, which encapsulates
all these steps and improves your experience with managing a Linux box to be used
for podman-remote. In this appendix, you’ll learn how to install Podman on macOS
and then use the podman machine commands to install, configure, and manage the
VM to allow you to use the native Podman client to launch containers.

 The first step to launching Podman on a macOS is installing it. The macOS client
is available through Homebrew (https://brew.sh/).

NOTE Homebrew describes itself as “… the easiest and most flexible way to
install the UNIX tools Apple didn’t include with macOS” (https://docs.brew
.sh/Manpage).

Homebrew is the best way to get open source software installed on your macOS. If you
do not currently have Homebrew installed on your macOS, open a terminal, and
install it with the following command at the prompt:

$ /bin/bash -c "$(curl -fsSL

➥ https:/ /raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Now run the following brew command to install a trimmed-down version of Podman,
with only --remote support, into the /opt/homebrew/bin directory:

$ brew install podman

If you don’t have access to a Linux VM or a remote Linux server, Podman allows you
to create a locally running VM using the podman machine command. It makes this easy
by creating and configuring a VM with a Podman service enabled.

NOTE If you have an existing Linux machine, you can use the Podman system
connection commands to set up connections to those machines.

E.1 Using podman machine
The podman machine commands allow you to pull a VM from the internet and start it,
stop it, or remove it. This VM is preconfigured with the Podman service. Additionally,
this command creates the SSH connection and adds this information to the podman
system connection datastore, greatly simplifying the process of setting up a podman-
remote environment. Table E.1 lists all of the podman machine subcommands used to
manage the life cycle of the Podman virtual machine. The first step is initializing a
new VM in your system using the podman machine init command, described in the
following section.

http://mng.bz/69ro
https://brew.sh/
https://docs.brew.sh/Manpage
https://docs.brew.sh/Manpage
https://docs.brew.sh/Manpage

264 APPENDIX E Podman on macOS
E.1.1 podman machine init

The podman machine init command downloads and configures a VM on your macOS
system (figure E.1). By default, it downloads the latest released fedora-coreos
image (https://getfedora.org/en/coreos) if it was not downloaded before. Fedora
CoreOS is a minimal operating system designed to run containers.

NOTE The VM is relatively large and takes a few minutes to download.

Table E.1 Podman machine commands

Command Description

init Initialize a new virtual machine.

list List virtual machines.

rm Remove a virtual machine.

ssh ssh into a virtual machine. This is useful for entering the virtual machine and running the
native Podman commands. Some Podman commands are not supported remotely, and
you might want to change some configurations inside the VM.

start Start a virtual machine.

stop Stop a virtual machine. If you are not running containers, you might want to shut down
the VM to save system resources.

Podman machine init

Podman pulls down a VM
(with the default Fedora
CoreOS) and installs it on
the Mac.

SSH

credentials

Mac client

Internet

SSH

Fedora

CoreOS VM

Podman creates SSH keys
and shares them with the
VM.

Figure E.1 The podman machine init command pulling the VM and configuring the SSH connections

https://getfedora.org/en/coreos

265E.1 Using podman machine
$ podman machine init
Downloading VM image: fedora-coreos-35.20211215.2.

➥ 0-qemu.x86_64.qcow2.xz
[=========>--] 111.0MiB /

➥ 620.7MiB
Downloading VM image: fedora-coreos-35.20211215.2.0-qemu.x86_64.qcow2.xz: done
Extracting compressed file

Podman preconfigures the VM with the amount of memory, disk size, and CPUs for it
to use. These values can be configured using init subcommand options. Table E.2
describes these options.

Once podman machine init finishes downloading and installing the VM, you can view
the VM with the podman machine list command. Notice the * indicates the default
VM to be used. The podman machine command currently only supports running one
VM at a time:

$ podman machine list
NAME VM TYPE CREATED LAST UP CPUS

➥ MEMORY DISK SIZE
podman-machine-default* qemu 2 minutes ago 2 minutes ago 1

➥ 2.147GB 10.74GB

In the next section, you’ll examine the automatically created SSH connection.

Listing E.1 Podman downloading a VM onto the Mac and preparing it for execution

Table E.2 Podman machine init command options

Option Description

--cpus uint Number of CPUs (the default is 1)

--disk-size uint Disk size in GB (the default is 10). This is an important setting to consider,
since it limits the number of containers and images allowed to be used
within the VM. If you have the space, I recommend increasing the field.

--image-path string Path to qcow image (the default is testing). Podman has two built-in
Fedora CoreOS images it can pull: testing and stable. You can also
select other OSs and VMs to download, but the VMs must support
CoreOS/Ignition files (https://coreos.github.io/ignition/).

--memory integer Memory in MB (the default is 2048). The VM requires a certain amount of
memory to run, and depending on the containers you want to run within the
VM, you might need more.

Podman finds and downloads
the latest fedora-coreos qcow
image onto your system.

After downloading the image, Podman decompresses the
image and configures qemu to be ready to execute it. It
also configures the SSH connection to the Podman
system connection datastore.

https://coreos.github.io/ignition/

266 APPENDIX E Podman on macOS
E.1.2 Podman machine SSH configuration

The podman machine init command provides the OS with the Ignition config, which
includes an SSH key for the core user. Then Podman adds SSH connections on the client
machine for the rootless and rootful modes, configures the user account, and adds
required packages and configurations within the VM. The SSH configuration allows pass-
word-less SSH commands to the core and root accounts from the client. The podman
machine init command also configures the Podman system connection information
(see section 9.5.4). The system connection database is configured for both the rootful
user and the rootless user within the VM. If no previous connections are present, the
podman machine init command will make the newly created connection a default one.

 You can examine all the connections using the podman system connection list com-
mand. The default connection, podman-machine-default, is the rootless connection:

$ podman system connection list
Name URI
Identity Default
podman-machine-default

➥ ssh:/ /core@localhost:50107/run/user/501/podman/podman.sock

➥ /Users/danwalsh/.ssh/podman-machine-default true
podman-machine-default-root

➥ ssh:/ /root@localhost:50107/run/podman/podman.sock

➥ /Users/danwalsh/.ssh/podman-machine-default false

Sometimes containers you want to execute require root privileges and cannot run in
rootless modes. For this, you can modify the system connection to default to the root-
ful service using the podman system connection default command:

$ podman system connection default podman-machine-default-root

View the connections again to confirm the default connection is now podman-
machine-default-root:

$ $ podman system connection list
Name URI

➥ Identity Default
podman-machine-default

➥ ssh:/ /core@localhost:50107/run/user/501/podman/podman.sock

➥ /Users/danwalsh/.ssh/podman-machine-default false
podman-machine-default-root

➥ ssh:/ /root@localhost:50107/run/podman/podman.sock

➥ /Users/danwalsh/.ssh/podman-machine-default true
n-machine-default ssh:/ /root@localhost:38243/run/podman/podman.sock

Now all Podman commands connect directly to the Podman service running within
the root account. Change the default connection back to the rootless user using the
Podman system connection default command again:

$ podman system connection default podman-machine-default

267E.1 Using podman machine
If you attempt to run a Podman container at this point, it fails because the VM is not
actually running. You need to start the VM.

E.1.3 Starting the VM

After adding a VM and setting a specific connection as a default one, try running a
podman command:

$ podman version
Cannot connect to Podman. Please verify your connection to the Linux system
using `podman system connection list`, or try `podman machine init` and
`podman machine start` to manage a new Linux VM
Error: unable to connect to Podman. failed to create sshClient: Connection
to bastion host (ssh:/ /root@localhost:38243/run/podman/podman.sock)
failed.: dial tcp [::1]:38243: connect: connection refused

As the error points out, the VM is not running and must be started.
 You start a single VM using the podman machine start command. Podman only

supports running one VM at a time. By default, the start command starts the default
VM. If you have multiple VMs and want to start a different VM, you can specify the
optional machine name:

$ podman machine start
INFO[0000] waiting for clients...
INFO[0000] listening tcp:/ /127.0.0.1:7777
INFO[0000] new connection from @ to /run/user/3267/podman/

➥ qemu_podman-machine-default.sock
Waiting for VM …
macOShine "podman-machine-default" started successfully

You are now ready to begin running Podman commands on the Linux box that runs
the Podman service. Run the podman version command to confirm the client and
server are configured correctly. If not, the Podman commands should instruct you on
configuring the system:

$ podman version
Client:
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18.1
Built: Thu May 5 16:07:47 2022
OS/Arch: darwin/arm64
Server:
Version: 4.1.0
API Version: 4.1.0
Go Version: go1.18
Built: Fri May 6 12:16:38 2022
OS/Arch: linux/arm64

268 APPENDIX E Podman on macOS
Now you can use the Podman commands you learned in the previous chapters directly
on macOS. When you are done working with containers in the VM, you probably
should shut it down to save resources.

NOTE Podman is supported on M1 arm64 machines as well as the x86 plat-
forms. podman machine init downloads the matching architecture VM, allowing
you to build images for that architecture. Support for building images on
other architectures is being worked on as of this writing.

E.1.4 Stopping the VM

The podman machine stop command allows you to shut down all containers within the
VM as well as the VM itself:

$ podman machine stop

When you need to start using containers again, launch the VM with the podman machine
start command.

NOTE All of the podman machine commands work on Linux as well and allow
you to test different versions of Podman at the same time. Podman on Linux
is the complete command; therefore, you need to use the --remote option to
communicate with the Podman service running within the VM launched by
the Podman machine. On non-Linux platforms the --remote option is not
required, since the client is preconfigured in --remote mode.

Summary
 Linux containers require a Linux kernel, meaning running containers on a

macOS requires a virtual machine running Linux.
 Podman on a macOS is not running containers locally on the macOS. The Pod-

man command is actually communicating with the Podman service running on
a Linux machine.

 The podman machine init command pulls down and installs a Fedora CoreOS
VM onto your platform, which is running the Podman service.

 The podman machine init command also sets up the SSH environment required
to allow the Podman remote client to communicate with the Podman server
inside the VM.

appendix F
Podman on Windows

Podman is a tool for launching Linux containers. Linux containers require a Linux
kernel. As much as I’d love to convince the world to move to the Linux desktop like
me, most users work on Mac and Windows operating systems—perhaps even you. If
you use the Linux desktop, hooray! And if you don’t use a Windows machine, feel
free to skip this appendix.

 Because you did not skip this appendix, I’ll assume you want to create Linux
containers without having to ssh into a Linux machine and create the container
there. You likely want to use native software development tools and keep their soft-
ware local to their machines.

 On Linux, Podman can be run as a service allowing remote connections to
launch containers. Then, from another system, the podman --remote command can
be used to communicate with the remote Podman service to launch a container.

This appendix covers
 Installing Podman on Windows

 Using the podman machine init command to
create a Fedora-based WSL 2 distribution running
Podman

 Using the podman command on Windows to
communicate with the Podman service running
in the WSL 2 instance

 Starting or stopping the WSL 2 instance with the
podman machine start/stop commands
269

270 APPENDIX F Podman on Windows
 Further, you can use podman system connection to configure podman --remote to
communicate with a remote Linux machine running the Podman service over SSH,
without providing a URL to every command. The problem with all of this is that some-
one has to configure the remote machine with the correct version of the Podman ser-
vice, and then you have to configure the SSH session.

 Realizing that this experience is not optimal for new users of Podman on a Win-
dows desktop, Podman added a new command: podman machine. The podman machine
command makes it easy to create and manage a WSL 2-based Linux environment with
Podman preinstalled and configured. The Podman command on Windows is actually a
thinned down Podman command with only podman --remote support. In this appendix,
you’ll learn how to install Podman onto your Windows machine, and then use the pod-
man machine commands to install, configure, and manage the WSL 2 instance.

F.1 First steps
The podman machine command on Windows accepts all the same commands as those
used on Linux and Mac, with very similar behavior. Still, there are a few differences,
since the underlying backend on Windows is based on Windows Subsystem for Linux
(https://docs.microsoft.com/en-us/windows/wsl/) instead of the VM, as in the other
operating systems.

 WSL 2 involves using the Windows Hyper-V hypervisor; however, unlike a standard
VM-based approach, WSL 2 shares the same VM and Linux kernel instance across
every Linux distribution instance installed by the user. As an example, if you create
two WSL 2 distributions, and you run dmesg on each instance, you see the same out-
put, since the same kernel is hosting both.

NOTE WSL 1 doesn’t work with Podman; you must upgrade your Windows
machine to an OS version that supports WSL 2. For x64 systems, you will need
Windows version 1,903 or higher, with build 18,362 or higher. For arm64 sys-
tems, you will need Windows version 2004 or higher, with build 19,041 or
higher.

Running Podman with WSL 2 enables efficient resource sharing between the host and
all running instances in exchange for less isolation. Keep in mind the podman machine
command shares the same kernel with any other distributions you have running, and
be cautious when manipulating any kernel-level setting (e.g., network interfaces and
netfilter policy) in any distribution because you may unintentionally affect containers
executed by Podman.

F.1.1 Prerequisites

Podman for Windows requires Windows 10 (build 19,041 or later) or Windows 11. As
WSL 2 uses a hypervisor, your computer must have virtualization instructions enabled
(e.g., Intel VT-x or AMD-V). Additionally, the hypervisor requires second-level address
translation (SLAT) support. Finally, your system must either have internet connectiv-
ity or an offline copy of all software to be fetched by the podman machine.

https://docs.microsoft.com/en-us/windows/wsl/

271F.1 First steps
NOTE If at any time you experience the errors 0x80070003 or 0x80370102
(or any error indicating the VM cannot be started), you most likely have virtu-
alization disabled. Check your BIOS (or WSL 2 instance) settings to verify
VT-x/AMD-V/WSL 2 instance and SLAT are enabled.

While not required, installing Windows Terminal (as opposed to the standard CMD
command application or PowerShell) is strongly recommended (future versions of
Windows 11 include it by default). In addition to having modern terminal features,
like transparent cut and paste and tiled screens, it also offers direct WSL and Power-
Shell integration, making it easy to switch between environments. You can install it via
the Windows store or winget:

PS C:\Users\User> winget install Microsoft.WindowsTerminal

F.1.2 Installing Podman

Installing Podman is straightforward. Go to the Podman site or the Podman GitHub
repository, and download the latest Podman MSI Windows Installer in the Releases
section (figure F.1; https://github.com/containers/podman/releases).

Figure F.1 Downloading and running the Podman installer

https://github.com/containers/podman/releases

272 APPENDIX F Podman on Windows
After running the installer, open a terminal (use the wt command if you installed Win-
dows Terminal as recommended), and execute your first podman command (figure F.2).

AUTOMATIC WSL INSTALLATION

If WSL is not installed on your Windows system, Podman installs it for you. Simply exe-
cute the podman machine init command (as illustrated in figure F.3) to create your
first machine instance, and Podman prompts you for permission to install WSL. The
WSL install process requires a reboot but resumes execution of the machine creation
process. (Be sure to wait a few minutes for the terminal to relaunch and install.) If you
prefer a manual installation, refer to the WSL installation guide: https://docs.microsoft
.com/en-us/windows/wsl/install.

F.2 Using podman machine
The setup and use of the Linux environment is made easy through the use of podman
machine commands. On Windows, these commands create and manage a WSL 2 dis-
tribution, including downloading a base Linux image and packages from the internet
and setting everything up for you. The WSL 2 distribution is preconfigured with the
Podman service, and SSH connection configuration is automatically added to the
podman system connection datastore. The final result is the ability to easily run Pod-
man commands on your Windows desktop as if it was a Linux system. Table F.1 lists all
of the podman machine commands used to manage the lifecycle of the WSL 2-backed
Linux environment.

 After installing Podman (see section F.1.2), the first step is creating a WSL 2
machine instance on your system. You will use the podman machine init command,
described in the following section.

Figure F.2 Podman commands running within the Windows Terminal

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install

273F.2 Using podman machine
F.2.1 podman machine init

As shown in figure F.4, you can use the podman machine init command to automate
the installation of a WSL 2-based Linux environment that hosts a Podman service for
running containers. By default, podman machine init downloads a known compatible

Table F.1 podman machine commands

Command Description

init Initialize a new WSL 2-based machine instance.

list List WSL 2 machines.

rm Remove a WSL 2 machine instance.

set Set an updatable WSL machine setting.

ssh ssh into a WSL 2 machine instance. This is useful for entering the WSL 2 instance and
running the native Podman commands. Some Podman commands are not supported
remotely, and you might want to change some configurations inside the WSL 2 instance.

start Start a WSL 2 machine instance.

stop Stop a WSL 2 machine instance. If you are not running containers, you might want to stop
to save system resources.

Figure F.3 The podman machine init starts the WSL installation.

274 APPENDIX F Podman on Windows
release of Fedora to create the WSL 2 instance (https://getfedora.org). Fedora is
used, since it is well integrated with Podman and is the operating system used by most
of the Podman core developers.

NOTE In addition to the base image, a number of packages must be down-
loaded and installed, which can take several minutes to complete.

The following shows the condensed output from running the podman machine init
command:

PS C:\Users\User> podman machine init
Downloading VM image: fedora-35.20211125-x86_64.tar.xz: done
Extracting compressed file
Importing operating system into WSL (this may take 5+ minutes on a new WSL

➥ install)...
Installing packages (this will take awhile)...
Fedora 35 - x86_64 5.5 MB/s | 79 MB 00:14
Complete!
Configuring system…
Generating public/private ed25519 key pair.
Machine init complete
To start your machine run:
 podman machine start

Podman downloads a
known compatible release
of Fedora to create the
WSL 2 instance.

Fedora

WSL 2 nstancei

Internet

Podman creates SSH
keys and shares them with
the WSL 2 instance.

podman machine init

SSH

credentials

Windows client

SSH

Figure F.4 The podman machine init command creating the WSL 2 distribution and configuring SSH
connections.

https://getfedora.org

275F.2 Using podman machine
Table F.2 explains the init options that allow you to customize the default settings.

NOTE The physical limits specified in table F.2 (e.g., CPU, memory, and disk)
are currently ignored on Windows, since the Windows Subsystem for Linux
(WSL) backend dynamically resizes and shares resources across distributions.
If you need to constrain resources, you can configure those limits in your
users’ .wslconfig file. However, they apply globally to all WSL 2 distros, since
they share the same underlying VM.

F.2.2 Podman machine SSH configuration

The podman machine init command creates an account within the WSL 2 instance. By
default, the user in Fedora is user@localhost. Podman configures SSH on the client
machine and the new user account and root within the WSL 2 instance. The SSH con-
figuration allows for passwordless SSH commands to the user and root accounts from
the client. The podman machine init command also configures the Podman system
connection information (see section 9.5.4). The system connection database is config-
ured for both the rootful user and rootless user within the WSL 2 instance. If you do
not have any existing connections, the podman machine init command creates and
sets as a default one of the rootless user connections to your WSL 2 instance.

 You can examine all of the connections using the podman system connection
list command. The default connection, podman-machine-default, is the rootless
connection:

PS C:\Users\User> podman system connection ls
Name URI Identity

➥ Default
podman-machine-default ssh:/ /user@localhost:57051.. podman-machine-

➥ default true
podman-machine-default-root ssh:/ /root@localhost:57051.. podman-machine-

➥ default false

Sometimes containers you want to execute require root privileges and cannot run in
rootless modes. You can change the default connection to rootful by switching the

Table F.2 podman machine init command options

Option Description

--cpus uint Not used

--disk-size uint Not used

--image-path string On Windows, this option refers to the Fedora distribution number (e.g., 35).
As with Linux and Mac, you can also specify an arbitrary URL or filesystem
location with a custom image, but Podman expects a Fedora-derived layout.

--memory integer Not used

--rootful Determines whether this machine instance should be rootful or rootless

276 APPENDIX F Podman on Windows
default mode for the created machine instance. Modify the default to rootful service
using the podman machine set command:

PS C:\Users\User> podman machine set --rootful

View the connections again to confirm the default is now podman-machine-default-
root:

PS C:\Users\User> podman system connection ls
Name URI Identity

➥ Default
podman-machine-default ssh:/ /user@localhost:57051..

➥ podman-machine-default false
podman-machine-default-root ssh:/ /root@localhost:57051..

➥ podman-machine-default true

Now all Podman commands connect directly to the Podman service running within
the root account. Change the default connection back to the rootless user using the
podman machine set command again:

PS C:\Users\User> podman machine set --rootful=false

If you attempt to run a Podman container at this point, it fails because the machine
instance is not actually running. You need to start the machine instance.

F.2.3 Starting the WSL 2 instance

Attempting to execute the podman version command fails because the WSL 2
instance is not started:

PS C:\Users\User> podman version
Cannot connect to Podman. Please verify your connection to the Linux system
using `podman system connection list`, or try `podman machine init` and
`podman machine start` to manage a new Linux Linux VM
Error: unable to connect to Podman. failed to create sshClient: Connection
to bastion host (ssh:/ /root@localhost:38243/run/podman/podman.sock)
failed.: dial tcp [::1]:38243: connect: connection refused

As the error points out, the virtualized Linux environment (the WSL 2 machine
instance) is not running and must be started.

 You start a single WSL 2 instance using the podman machine start command. By
default, it starts the default WSL 2 instance: podman-machine-default. If you have
multiple WSL 2 instances and want to start a different WSL 2 instance, you can specify
the optional machine name for the podman machine start command:

PS C:\Users\User> podman machine start
Starting machine "podman-machine-default"
This machine is currently configured in rootless mode. If your containers
require root permissions (e.g. ports < 1024), or if you run into compatibility
issues with non-podman clients, you can switch using the following command:
 podman machine set --rootful

277F.2 Using podman machine
API forwarding listening on: npipe:////./pipe/docker_engine
Docker API clients default to this address. You do not need to set
DOCKER_HOST.
Machine "podman-machine-default" started successfully

You are now ready to begin running Podman commands on the host that communi-
cates with the Podman service running in the WSL 2 instance. Run the podman ver-
sion command to confirm the client and server are configured correctly. If not, the
Podman commands instruct you on how to configure the system:

PS C:\Users\User> podman version
Client: Podman Engine
Version: 4.0.0-dev
API Version: 4.0.0-dev
Go Version: go1.17.1
Git Commit: bac389043f268e632c45fed7b4e88bdefd2d95e6-dirty
Built: Wed Feb 16 00:33:20 2022
OS/Arch: windows/amd64
Server: Podman Engine
Version: 4.0.1
API Version: 4.0.1
Go Version: go1.16.14
Built: Fri Feb 25 13:22:13 2022
OS/Arch: linux/amd64

Now you can use the Podman commands you learned in the previous chapters directly
on Windows. Make sure you understand that Podman on Windows is equivalent to
podman --remote talking remotely to the Podman service within the WSL 2 instance.

F.2.4 Using podman machine commands

After your machine instance is running, you can perform Podman commands in your
PowerShell prompt as if running within Windows:

PS C:\Users\User> podman run ubi8-micro date
Thu Jan 6 05:09:59 UTC 2022

STOPPING THE WSL 2 INSTANCE
When you are done using containers on your system, you might want to shut down the
WSL 2 instance to save on system resources. Use the podman machine stop command
to shut down all containers within the WSL 2 instance as well as the WSL 2 instance:

PS C:\Users\User> podman machine stop

When you need to start using containers again, launch the WSL 2 instance with the
podman machine start command.

NOTE All of the podman machine commands work on Linux as well and allow
you to test different versions of Podman at the same time. Podman on Linux

278 APPENDIX F Podman on Windows
is the complete command; therefore, you need to use the --remote option
to communicate with the Podman service running within the WSL 2 instance
launched by the podman machine command. On non-Linux platforms, the
--remote option is not required, since the client is preconfigured in --remote
mode.

LISTING MACHINES

You can list the available machine instances using the podman machine ls command.
The values returned by this command on Windows reflect current active usage, as
opposed to fixed resource limits, as is the case on Mac and Linux. Disk storage reflects
the disk space currently allocated to each machine instance. The CPU values convey
the number of CPUs on the Windows host (unless limited by WSL) repeated per
machine instance. The returned memory values are also repeated (with slight varia-
tion from sampling variability) and reflect the total amount of memory used by the
Linux kernel for all distributions in use (since it is shared). In other words, for total
usage, you sum the disk sizes but not memory and CPU.

PS C:\Users\User> podman machine ls
NAME VM TYPE CREATED LAST UP CPUS

➥ MEMORY DISK SIZE
podman-machine-default wsl 3 days ago Running 4

➥ 528.4MB 845.2MB
other wsl 4 minutes ago Running 4

➥ 524.5MB 778MB

USING PODMAN AT THE WSL PROMPT

In addition to the podman machine ssh command, you can also access the podman
machine guest using the WSL prompt. If you are running Windows Terminal, the
podman machine guests (names prefixed by Podman) are in the down-arrow drop-
down. Alternatively, you can drop into a WSL shell from any PowerShell prompt by
using the wsl command and specifying the backing distribution name. For example,
the default instance created by podman machine init is podman-machine-default. You
can use either approach to manage the guest and execute Podman commands inside
a full-featured Linux shell environment:

PS C:\Users\User> wsl -d podman-machine-default
[root@WIN10PRO /]# podman version
Client: Podman Engine
Version: 4.0.1
API Version: 4.0.1
Go Version: go1.16.14

Built: Fri Feb 25 13:22:13 2022
OS/Arch: linux/amd64

279Summary
UPDATING FEDORA

Since the Windows machine implementation is based on Fedora, not Fedora CoreOS,
fixes and enhancements are not automatic. They must be explicitly initiated on the
guest using Fedora’s package management command: dnf. Further, upgrading to a
new version of Fedora requires exporting any data you need to preserve and using
podman machine init to create a second machine instance (or replacing the existing
one after a podman machine rm command).

NOTE Currently, it is difficult to run Fedora CoreOS inside of WSL, so it was
decided to default to Fedora. If Windows support for CoreOS changes in the
future, podman machine will move to Fedora CoreOS.

As an example, to pull the latest packages for the version of Fedora running on the
podman guest, perform the following command:

PS C:\Users\User> podman machine ssh dnf upgrade -y
Warning: Permanently added '[localhost]:52581' (ED25519) to the list of
known hosts.
Last metadata expiration check: 1:18:35 ago on Wed Jan 5 21:13:15 2022.
Dependencies resolved.
…
Complete!

ADVANCED STOPPING AND RESTARTING

Normally, to stop and restart Podman, you would use the respective podman machine
stop and podman machine start commands. Stopping the machine is the preferred
approach, since system services can come to a clean stop. However, in some cases, you
may wish to force a hard restart of the WSL facilities, including the shared Linux ker-
nel, which stays active even after a machine stop. To kill all processes associated with a
WSL distribution, use the wsl --terminate <machine name> command. To shut down
the Linux kernel, killing all running distributions, use the wsl --shutdown command.
After these commands are issued, you can use a standard podman machine start com-
mand to relaunch your instance:

PS C:\Users\User> wsl --shutdown
PS C:\Users\User> podman machine start
Starting machine…
Machine "podman-machine-default" started successfully

Summary
 Linux containers require a Linux kernel, meaning running containers on a

Mac or Windows platform requires a VM running Linux.
 Podman on Windows does not run containers locally on Windows. The Podman

command is actually podman --remote communicating with the Podman service
running on a Linux machine backed by WSL 2.

280 APPENDIX F Podman on Windows
 The podman machine init pulls down and installs a virtual Linux environment
onto your platform, which runs the Podman service.

 The podman machine init command also sets up the SSH environment required
to allow the Podman remote client to communicate with the Podman server
inside of the WSL 2 instance.

 Podman on Windows with WSL is the full Podman command. WSL is running
the Podman commands under the Linux kernel, even though it feels like it is
running natively on the Windows machine.

index
A

accept flag 224
add command 239
ADD instruction 239–240
- -all option 35–36, 38, 44, 49, 54, 84–86
always option 137
Apache Service 132–134
APIs, Podman-supported 171–173
apt tool 24
Arch Linux 256
- -arch option 58
arm64 machine 13
attach command 40
- -attach option 35
auditing 218–220
aufs storage driver 95
augenrules - -load command 220
- -auth-file option 49
automatic WSL installation 272
automating building of application

64–65
auto-userns-max-size option 201
auto-userns-min-size option 201

B

bash script 30
binderfs mount type 117
bind mount type 117
blocking pulling from container registries

98–100
Bounding set of capabilities 194
BPF (Berkeley Packet Filter) 214
brew command 263
btrfs storage driver 95

Buildah 237–244
add command 239
adding content to working container directly

from host 240–241
adding data to working container 239
as library 244
build command 243
building images from Containerfiles 243–244
commit command 242
config command 241
configuring working container 241–242
copy command 239
creating images from working container 242–243
creating working container from base

image 238–239
from command 238–239
inspect command 241
login command 243
mount command 240
push command 243
pushing images to container registry 243
running commands in working container

239–240
unshare command 240

Buildah tool 237
command 234
management tool 7

build command 65
- -build flag 159
building images 60–65

automating building of application 64–65
format of Containerfile or Dockerfile 61–64

adding content to image 61–62
committing image 63–64
documenting how to use image 62–63

- -build option 160
281

INDEX282
C

capabilities
adding 197–198
- -cap-add flag 197–198
CAP_AUDIT_WRITE 155, 195
CAP_CHOWN option 115, 196, 201
CAP_DAC_OVERRIDE option 196
- -cap-drop flag 163, 197–198
CAP_FOWNER option 196
CAP_KILL option 196
CAP_MKNOD option 155, 195
CAP_NET_ADMIN option 115
CAP_NET_BIND_SERVICE option 196
CAP_NET_RAW option 155, 195
CAP_SETFCAP option 196
CAP_SETFSID option 196
CAP_SETGID option 115, 196
CAP_SETUID option 115, 196
capsh program 194–195
CAP_SYS_ADMIN option 115, 163, 192, 196,

206
CAP_SYS_CHROOT option 196
dropped CAP_SYS_ADMIN 196
dropping 197
root without 198
user namespaced Linux capabilities 201–202

CentOS 256
cgroupfs mount type 117
cgroups resource constraints 4
- -change option 40
checkpoint command 40, 248
chmod command 82
chown command 114
CI (continuous integration) systems 153, 182
cleanup command 40
client machine 184–185
CMD instruction 40, 62, 241
cmd option 129
coloring books

Container Coloring Book 190
Container Commandos 233
SELinux Coloring Book 208

command line 27–66
building images 60–65

automating building of application 64–65
format of Containerfile or Dockerfile 61–64

user-friendly, Podman 19–20
working with container images 41–60

differences between container and image
42–44

inspecting images 45–46
listing images 44–45
logging into container registry 48–50
mounting images 59–60

pulling images 55–58
pushing images 46–48
removing images 53–55
searching for images 58
tagging images 50–52

working with containers 28–40
creating image from container 39–40
exec-ing into container 38–39
exploring containers 28–30
inspecting containers 36–37
listing containers 36
removing containers 37–38
running containerized application 30–34
starting containers 35
stopping containers 34–35

commands 277
adding data to working container 239
from base image command 238–239
running in working container 239–240

commit command 40
committing images 63–64
community, joining 259–260
compat API 174, 177
complete podman command 180
configuration files 89–105

for engines 100–103
for registries 96–100
for storage 91–96

storage drivers 94–96
storage location 91–94

system configuration files 104–105
conmon (container monitor) tool 121, 124, 138,

257
connection command 186
container engines 4
Containerfiles 61–64, 243–244

adding content to image 61–62
committing image 63–64
documenting how to use image 62–63

container_file_t type 209
container images

building using Podman and Kubernetes YAML
files 159–162

command line working with 41–60
differences between container and image

42–44
inspecting images 45–46
listing images 44–45
logging into container registry 48–50
mounting images 59–60
pulling images 55–58
pushing images 46–48
removing images 53–55
searching for images 58
tagging images 50–52

INDEX 283
container images (continued)
containing content owned by multiple

UIDs 110–117
mount namespace 115–116
user namespace 111–115
user namespace and mount namespace 117

creating from container 39–40
creating images from working container 242–243
format of 13–14
leading to microservices 11
overview 9–11
Podman image signing 224–227

configuring Podman to pull signed
images 226–227

signing and pushing image 225
pulling images 119–120

container libraries
containers/buildah library 90
containers/common library 90
containers/image library 90, 236
containers/storage library 90
containers-common tool 257

containernetworking-plugins 257
container orchestrators 4
container runtimes 4

OCI container runtimes 246–253
containers 7–14, 237

adding to pods 81–83
command line working with 28–40

creating image from container 39–40
exec-ing into container 38–39
exploring containers 28–30
inspecting containers 36–37
listing containers 36
removing containers 37–38
running containerized application 30–34
starting containers 35
stopping containers 34–35

differences between images and containers
42–44

generating from Kubernetes YAML files 157–162
building images 159–162
shutting down pods and containers 158–159

reasons for using Podman 15
rolling back failed containers after update 147
rootless containers 16–17
running containers in notify unit files 145–146
running Podman within 162–165

Kubernetes pod 164–165
Podman container 163–164

running systemd within 128–134
containerized systemd requirements 131
Podman container in systemd mode 131–132
running Apache Service within systemd

container 132–134

socket-activated Podman containers 147–149
standards 14
starting at boot 137–145

automatically updating Podman
containers 142–145

distributing systemd unit files to manage Pod-
man containers 141–142

Podman containers as systemd services 138–141
restarting containers 137

using volumes with 68–74
named volumes 70–72
volume mount options 72–74

CONTAINERS_CONF environment variable 101
containers-registries.conf(5) man page 100
container-tools module 257
container_t process 210
container_t type 208–209
COPY instruction 61, 64, 239–240
core account 266
COW (copy-on-write) file systems 94
cp tool 40, 238, 240
- -cpus uint option 265, 275
create command 40, 86, 153, 221, 248
CREATED heading 44
credential helpers 49
CRI-O (Container Runtime Interface for OCI

containers) 244–245
CRI-O tool 234
crun runtime 4, 7, 14, 103, 121, 249–250
- -ctr* option 85
- -ctr-names option 158
curl command 170–171
customizability 25

D

DAC (discretionary access control) 110
daemons 19, 217–220

access to docker.sock 217
auditing and logging 218–220

dangling images 54
-d (- -detach) option 31
Debian 256
default policy 224
delete command 248
- -detach (-d) mode 123
devmapper storage driver 95
devpts mount type 117
df command 186
diff command 40, 65
dir transport 25, 47, 235
discretionary access control (DAC) 110
- -disk-size uint option 265, 275
dnf tool 24, 133, 174, 240
docker-archive transport 25, 47, 236

INDEX284
docker-compose 176–180
compose command 179
compose tool 177–179

docker-daemon transport 25, 48, 236
Dockerfile (container file) 61–64

adding content to image 61–62
committing image 63–64
documenting how to use image 62–63

docker.from_env() function 174
DOCKER_HOST environment variable 174–176,

178
docker.io registry 56
docker-py 21, 174–175
docker rm command 17
docker.sock 217
docker transport 46, 236
- -down flag 159
drivers, storage 94–96
dropped Linux capabilities 195–196
- -dry-run option 145
Duffy, Máirín 190, 233
du -s command 249

E

engines, configuration files for 100–103
ENTRYPOINT instruction 40, 62, 241

“/bin/sh -c” directive example 63
- -env-host option 183
ENV instruction 40, 62, 241
events

events, journald 136–137
events command 248
events_logger option 136

example_myapp_vol volume 179
exec command 38–40
ExecStart command 139, 141
ExecStop command 139, 141
ExecStopPost command 141
ExecStopPost script 144
exec syscall 213
exists command 41, 65, 86
exit command 59
export command 41
EXPOSE instruction 40, 62–63, 241–242

F

Fedora 256, 279
Fedora-CoreOS 256
fedora-coreos image 264
Fedora Silverblue 256

file system isolation 206–213
SELinux MCS separation 211–213
SELinux type enforcement 207–210

find command 228
force_mask storage driver 96
- -force option 38, 54–55, 69, 71, 86
fork/exec model 17–18, 217–220

access to docker.sock 217
auditing and logging 218–220

fork syscall 213
- -format option 37, 45–46, 58, 85
FROM instruction 61, 63–64, 238, 240
FUSE mount type 117
fuse-overlay driver 103
fuse-overlayfs executable 95, 120

G

Gentoo 256
GIDs (group identifiers) 110
github.com 261
github.com/containers/podman repository 261
github.com/containers/storage library 91
github.com/containers projects 260
givisord container runtime 14
graphRoot storage location 91
- -group-add option 183
gVisor runtime 7, 252–253

H

HEALTHCHECK instruction 242
history command 65
Homebrew 254–255
$HOME environment variable 93
host, adding content from 240–241
HPC (high-performance computing) 95, 106
httpd service 133, 239
- -http-proxy option 183

I

-identity option 185
idmap option 203–204
ignore_chown_errors option 95–96
- -ignore flag 154
IMAGE ID heading 44
- -image-path string option 265, 275
import command 66
info command 186
infra container 77
init command 41, 248, 264–265, 273
–init option 129
inode storage driver 96
inspecting

containers 36–37
images 45–46
inspect command 41, 66, 86, 221

INDEX 285
installing 254–257
Arch Linux and Manjaro Linux 256
CentOS 256
Debian 256
Fedora 256
Fedora-CoreOS, Fedora Silverblue 256
Gentoo 256
MacOS 254–255
OpenEmbedded 256
openSUSE 257
openSUSE Kubic 257
Raspberry Pi OS arm64 257
Red Hat Enterprise Linux 257
Ubuntu 257
Windows 255–256, 271–272

- -interactive (-i) option 34–35, 38–39
io.containers.autoupdate label 143
-i option 29, 39
IPC (inter-process communication)

namespace 206
isolation

file system isolation 206–213
SELinux MCS separation 211–213
SELinux type enforcement 207–210

IPC (inter-process communication)
isolation 206

network isolation 205
process isolation 204
system call isolation 213–214
UID isolation 198–204

isolating containers using - -userns=auto
flag 199–200

rootless Podman with - -userns=auto flag 202
user namespaced Linux capabilities 201–202
user volumes with - -userns=auto flag 202–204

J

journald 134–137
events 136–137
log driver 135–136

jq command 171

K

Kata container runtime 14
Kata containers 250–252

kill command 41, 86, 248
Kubernetes

generating Podman pods and containers
from 157–162

building images 159–162
shutting down pods and containers 158–159

generating with Podman 153–157
Kubernetes YAML files 151–165

overview 153
running Podman within container 162–165

Kubernetes pod 164–165
Podman container 163–164

Kubernetes for Developers (Denniss) 152
Kubernetes in Action (Lukša) 152
KVM (Kernel-based Virtual Machine) 215

L

LABEL instruction 40, 241–242
- -latest (-l) option 35, 37, 70, 84–85, 183
latest tag 56
layered file system 94
Linux capabilities 194–198

adding capabilities 197–198
dropped CAP_SYS_ADMIN 196
dropped Linux capabilities 195–196
dropping capabilities 197
no new privileges 198
root with no capabilities is still dangerous 198

Linux kernel pseudo file systems 191–194
masking additional paths 193–194
unmasking masked paths 192–193

List command 66, 86, 248, 264, 273
listing

containers 36
images 44–45
machines 278
pods 85

List (ps) command 41
load command 66
local connections 180–182
localhost registry 47
localhost tag 53
location, storage 91–94
logging 218–220

log_driver option 135
log drivers, journald 135–136
logs command 41, 86

ls command 221
ls -Z command 209
Lukša, Marko 152

M

macOS 254–255, 262–268
Homebrew 254–255
using podman machine 263–268

podman machine SSH configuration
266–267

starting virtual machine 267–268
stopping virtual machine 268

make tool 238, 240
Manjaro Linux 256

INDEX286
man pages
mount command 68
podman-build command 65
podman-commit command 40
podman-exec command 39
podman-image-inspect command 46
podman-image-prune command 55
podman-images command 45
podman-inspect command 37
podman-login command 49
podman-logout command 49
podman-ps command 36
podman-pull command 58
podman-rm command 38
podman-run command 34
podman-search command 58
podman-start command 35
podman-stop command 35
podman-system-prune command 45

mariadb container 73
mariadb image 73
masking paths 193–194
MCS (Multi-Category security) separation,

SELinux 211–213
- -memory integer option 265, 275
microservices 11, 128
migrate command 186
mkdir syscall 214
mount command 41, 66
mounting images 59–60
mount namespace 9, 115–117, 206–207
mount options, volume 72–74

SELinux volume options 73–74
U volume option 72–73

mount_program option 95–96
mqueue mount type 117
Multi-Category security (MCS) separation,

SELinux 211–213
myapp container 32, 38–40, 82–83, 109, 143, 154,

161, 178
myapp-new service 143
myapp-pod-myapp container 158
myapp-pod pod 154, 158, 161
myapp pods 156
myapp_vol volume 178
myimage application 71
myimage container 69, 71
myimage image 42–43, 46
mypod pod 80, 83
mysql user 73
mysystemd image 160
myuser user account 185

N

named volumes 70–72
- -name myapp option 32
- -name option 239
namespaces 9, 42
net1 network 205
net2 network 205
network namespace 9, 205
- -network net1 option 205
networks 120–121
- -new flag 141–142
- -new option 141–142
nobody user 113
no new privileges option 198
no-new-privileges option 198
notify service type 146
NOTIFY_SOCKET environment variable 146
notify unit files 145–146
- -no-trunc option 58
nsenter tool 59

O

oci-archive transport 25, 48, 236
OCI (Open Container Initiative) runtimes

121–123, 246–253
crun 249–250
gVisor 252–253
Kata 250–252
runc 248–249

oci transport 25, 47, 235
ONBUILD instruction 40, 63, 242
OpenEmbedded 256
openSUSE Kubic 257
open syscall 213
other permission 113
overlayfs mount type 117
overlay storage driver 94–95
overlay storage options 95–96

P

pacman tool 256
pause command 41, 86, 248
- -pause option 40
- -pid=host flag 204
PID namespace 9, 204
- -pid option 204
pivot_root syscall 206–207
play command 157
pod.lists() function 176
Podman 3–26, 254–258

advanced stopping and restarting 279
building from source code 257–258

INDEX 287
Podman (continued)
containers 7–14

as systemd services 138–141
automatically updating 142–145
container images 9–11, 13–14
container images leading to microservices 11
distributing systemd unit files to manage

141–142
in systemd mode 131–132
standards 14

contributing to 259–261
joining community 259–260
Podman on github.com 261

generating Kubernetes YAML files with 153–157
generating pods and containers from Kuberne-

tes YAML files 157–162
building images 159–162
shutting down pods and containers 158–159

installing 254–257
Arch Linux and Manjaro Linux 256
CentOS 256
Debian 256
Fedora 256
Fedora-CoreOS, Fedora Silverblue 256
Gentoo 256
MacOS 254–255
OpenEmbedded 256
openSUSE 257
openSUSE Kubic 257
Raspberry Pi OS arm64 257
Red Hat Enterprise Linux 257
Ubuntu 257
Windows 255–256

Podman Desktop 258
reasons for using 15–26

complete customizability 25
customizable registries 23–24
fork/exec model 17–18
integration with systemd 21–22
multiple transports 25
Podman is daemonless 19
pods 22–23
rootless containers 16–17
support for REST API 21
user-friendly command line 19–20
user namespace support 26
why have only one way to run containers 15

start options 35
terms 4–7
when not to use 26

Pod Manager 4, 77
Podman as a service 166–186

overview 167–171
podman - -remote command 180–185

configuring connection 185

local connections 180–182
remote connections 182–184
setting up SSH on client machine 184–185

Podman-supported APIs 171–173
Python libraries for interacting with

Podman 173–177
using docker-py with Podman API 174–175
using podman-py with Podman API 175–176
which Python library to use 176–177

systemd services 168–171
using docker-compose with 177–180

podman attach command 123
podman auto-update command 143–144, 147
podman auto-update options 145
podman build command 60–61, 64–65, 237, 244
podman command 29, 31, 180, 262, 267, 269, 272
podman commit command 39–40, 242
podman commit options 40
podman-container(1) man pages 40
podman container cleanup command 124
podman container cleanup $CTRID

command 121, 124
podman container create command 80
podman container inspect command 36
podman create command 32, 81
Podman Desktop 258
podman-docker package 20, 175
podman exec command 38, 68
podman exec options 39
podman generate kube command 22, 153–154, 158
podman generate kube myapp command 154
podman image diff podman command 43
podman image inspect command 45
podman image inspect options 46
podman image mount command 59, 228
podman image options 44
podman image prune command 54, 65
podman image prune options 54
podman images command 44, 50
podman image subcommands 60
podman image tree command 43, 45
Podman image trust command 221–227
podman image trust command 221–222
podman image trust show command 223
podman info command 57, 91–92
podman inspect command 13, 36–37, 45
podman inspect options 37
podman kill command 35
podman login command 48–49
podman logs command 134
podman machine 273–275

macOS 263–268
podman machine SSH configuration 266–267
starting VM (virtual machine) 267–268
stopping VM (virtual machine) 268

INDEX288
podman machine (continued)
Windows 272–279

advanced stopping and restarting 279
listing machines 278
Podman machine init 273–275
Podman machine SSH configuration 275–276
starting WSL 2 instance 276–277
stopping WSL 2 instance 277
updating Fedora 279
using Podman at WSL prompt 278
using podman machine commands 277

podman machine init command 256, 262–264,
266, 269, 272–275

podman machine list command 265
podman machine ls command 278
podman machine rm command 279
podman machine set command 276
podman machine ssh command 91, 222, 278
podman machine start/stop commands 262, 269
podman machine start command 267–268,

276–277, 279
podman machine stop command 268, 277, 279
podman mount command 240
podman network create command 205
podman package 256–257
podman pause process 105, 118
podman play kube - -build command 161
podman play kube command 23, 156–157
podman play kube - -down command 158
podman pod create command 80
podman pod list command 85
podman pod ps command 158–159
podman pod rm - -all - -force command 161
podman pod rm command 85
podman pod start command 83
podman pod stop command 84, 158
podman port command 31
podman ps -a command 180
podman ps command 20, 36, 83–84, 158
podman pull command 55, 61
podman push command 46–47, 64, 225
podman-py 175–176
podman-py library 166
podman-remote clients 185
podman - -remote command 180–185

configuring connection 185
local connections 180–182
remote connections 182–184

enabling Podman service on server
machine 183–184

enabling SSHD connections 183
setting up SSH on client machine 184–185

podman-remote command 180
podman-remote environment 263
podman rm command 37, 154, 161

podman rmi - -all - -force command 109
podman rmi command 53, 161
podman run command 28, 32, 34, 55, 61, 68, 71,

137, 141, 144
podman-run command 129
podman run - -detach command 138
podman-run man page 34
podman run man pages 193
podman run - -stop-signal option 34
podman search command 58
podman secret 220
podman start command 33, 35
podman stop command 34, 124, 143
podman stop myapp command 32
podman stop options 35
podman system connection add command 185
podman system connection command 185,

255–256, 262
podman system connection datastore 263, 272
podman system connection list command 185,

266, 275
podman system df command 55
podman system migrate command 105, 118
podman system service command 167–169
podman tag command 50, 64–65
Podman tool 234
podman unpause command 40
podman unshare command 59, 72, 114, 116
podman version command 267, 277
podman volume create command 70
podman-volume-create man pages 72
podman volume export command 72
podman volume import command 72
podman volume rm command 71
- -pod mypod option 81
pods 4, 77–86, 162

generating from Kubernetes YAML files 157
building images 159–162
shutting down pods and containers 158–159

Podman, advantages with 22–23
running 77–86

adding container to pod 81–83
creating pod 80–81
listing pods 85
removing pods 85–86
starting pod 83–84
stopping pod 84–85

-p option 31–32
port command 31
- -preserve-fds option 183
- -privileged command 163
- -privileged container 219
- -privileged flag 16, 209, 230
privileged Kubernetes container 164
- -privileged mode 190, 192

INDEX 289
- -privileged option 163
procfs mount type 117
prune command 41, 54, 66, 86, 186
ps command 30, 61, 248
pull command 66
pulling images 119–120

overview 55–58
short names and container registries 56–58

pulling signed images 226–227
pushing images 225

container transports 46–48
overview 46–48

python-docker package 174
Python libraries 173–177

using docker-py with Podman API 174–175
using podman-py with Podman API 175–176
which to use 176–177

Q

- -quiet (-q) option 36, 58

R

ramfs mount type 117
Raspberry Pi OS arm64 257
- -raw option 13
- -read-only mode 229
- -read-only option 229
- -read-only-tmpfs=false flag 229
- -read-only-tmpfs option 229
read syscall 213
Red Hat Enterprise Linux 257

RHEL7 257
RHEL8 257
RHEL9 257

registries
blocking pulling from 98–100
configuration files for 96–100
customizing Podman 23–24
logging into 48–50
pushing images to 243
short names and 56–58

registries.conf 96–100
registry.access.redhat.com container registry 28,

61
REGISTRY_AUTH_FILE environment variable 49
reject flag 224
remote connections 182–184

enable Podman service on server machine
183–184

enable SSHD connections 183
- -remote mode 268, 278
- -remote option 167, 180, 182, 185, 268, 278
- -remote support 263, 270

removing
containers 37–38
images 53–55
pods 85–86

rename command 41
renumber command 186
replicas flag 156
replicas option 156
Repository heading 44
reset command 186
resource constraints (cgroups) 8
REST API, Podman support for 21
restart command 41, 86
- -restart container 137
restarting containers 137
restore command 41, 249
restorecon command 93
resume command 249
RHEL7 257
RHEL8 257
RHEL9 257
rm command 41, 66, 86, 221, 264, 273
- -rm option 29–30, 34, 110, 124, 200
- -roll-back option 145
rolling back failed containers 147
ro option 69, 72
root account 266, 275
root-auto-userns-user option 201
rootfs container image 240
rootfs mount point 78
rootfs root file system 206, 248
rootfs (root filesystem) 13
- -rootful option 275
rootless containers 16–17, 106–124

conmon 121
containerized application running until

completion 124
creating container 120
images containing content owned by multiple

UIDs 110–117
mount namespace 115–116
user namespace 111–115
user namespace and mount namespace 117

launching OCI runtime 121–123
pulling image 119–120
setting up network 120–121

rootless_storage_path key 93
runc

command 252
executable 207
OCI runtime 7, 17, 121, 207
runtime 248–249

run command 50, 153, 249
RUN instruction 61, 239–240
runlabel command 41

INDEX290
running container 237
running containerized application 30–34
runsc OCI runtime 252
RUN systemctl enable httpd.service command 133
- -runtime option 246, 248

S

save command 66
scanning, image 228–229
scope 128
scp command 66
scratch image 61
sd-notify containerized services 127
sd-notify feature 145
sd-notify service type 146
search command 66
searching for images 58
seccomp 213–214

component 9
filters 163, 214
Linux kernel feature 213

second-level address translation (SLAT)
support 270

secret handling 220–221
- -secret my_secret,type=env flag 221
security 216–231

daemon vs. fork/exec model 217–220
access to docker.sock 217
auditing and logging 218–220

Podman image scanning 228–229
Podman image trust command 221–227
Podman secret handling 220–221
security in depth 229–230

Podman using all of security mechanisms
simultaneously 230

where to run containers 230
security constraints 8
security container isolation 189–215

file system isolation 207–213
IPC namespace 206
Linux capabilities 194–198

adding capabilities 197–198
dropped CAP_SYS_ADMIN 196
dropped Linux capabilities 195–196
dropping capabilities 197
no new privileges 198
root with no capabilities is still dangerous 198

mount namespace 206–207
network namespace 205
PID namespace 204
read-only Linux kernel pseudo file systems

191–194
masking additional paths 193–194
unmasking masked paths 192–193

system call isolation SECCOMP 213–214
UID isolation 198–204

isolating containers using - -userns=auto
flag 199–200

rootless Podman with - -userns=auto flag 202
user namespaced Linux capabilities 201–202
user volumes with - -userns=auto flag 202–204

VM (virtual machine) isolation 214–215
security in depth 229–230

Podman using all of security mechanisms
simultaneously 230

where to run containers 230
- -security-opt label=disable option 74
- -security-opt label:disable flag 213
- -security-opt mask=/proc/sys/dev flag 193
- -security-opt mask flag 193
- -security-opt no-new-privileges option 198
- -security-opt seccomp=unconfined flag 214
- -security-opt unmask=/proc/scsi flag 192
SELinux 207–213

MCS (Multi-Category security) separation
211–213

SELinux MCS separation 211–213
SELinux type enforcement 207–210
type enforcement 207–210

SELinux volume options 73–74
semanage command 93
server machine 183–184
service command 186
set command 273
SET_SETPCAP option 196
setuid program 194
short names 56–58
shutting down pods and containers 158–159
SIGCHLD signal 129
SIGKILL signal 34
sign command 66
signing images 225
sigstore flag 226
sigstore-staging flag 225
SIGTERM stop signal 34
SIZE heading 44
- -size option 36–37
size storage driver 96
skip_mount_home storage driver 96
Skopeo 7, 13, 234–236
skopeo copy command 236–237
skopeo delete command 237
skopeo inspect command 235, 237
skopeo list-tags command 237
skopeo login command 237
skopeo logout command 237
skopeo manifest digest command 237
skopeo sync command 236–237
SLAT (second-level address translation) support 270

INDEX 291
socket-activated Podman containers 147–149
socket-activated services 147
source code, building from 257–258
spec command 249
ssh command 264, 273
SSH connections

macOS 266–267
setting up on client machine 184–185
Windows 275–276

ssh-copy-id command 184
SSHD connections 183
ssh_home_t type 209
start command 41, 86, 249, 264, 273
starting

containers 35
Podman 279
pods 83–84
VM (virtual machine) 267–268
WSL 2 instance 276–277

state command 249
stats command 41, 86
STDERR file descriptor 123
STDIN file descriptor 123
STDOUT file descriptor 123
stop command 41, 86, 153, 264, 273
stopping

containers 34–35
Podman 279
pods 84–85
VM (virtual machine) 268
WSL 2 instance 277

STOPSIGNAL instruction 40, 242
storage, configuration files for 91–96

storage drivers 94–96
storage location 91–94

sudo command 195
syscall 213
sysfs mount type 117
system call isolation SECCOMP 213–214
system configuration files 104–105
systemctl command 133
systemd 21–22, 127–150

journald 134–137
events 136–137
log driver 135–136

rolling back failed containers after update
147

running containers in notify unit files 145–146
running within container 128–134

containerized systemd requirements 131
Podman container in systemd mode

131–132
running Apache Service within systemd

container 132–134
services 168–171

socket-activated Podman containers 147–149
starting containers at boot 137–145

automatically updating Podman containers
142–145

distributing systemd unit files to manage Pod-
man containers 141–142

Podman containers as systemd services
138–141

restarting containers 137
- -systemd=always flag 131

T

-t 0 option 34
tag command 66
tagging images 50–52
TAG heading 44
- -tag option 64
time container 83
- -time option 168
- -timeout (-t) option 35, 85
tmpfs mount type 117
tools 232–245

Buildah 237–244
adding content to working container directly

from host 240–241
adding data to working container 239
as library 244
building images from Containerfiles

243–244
configuring working container 241–242
creating images from working container

242–243
creating working container from base

image 238–239
pushing images to container registry 243
running commands in working

container 239–240
CRI-O (Container Runtime Interface for OCI

containers) 244–245
Skopeo 235–236

top command 41, 86
-t option 29
transport:ImageName format 46
transports

container registry (Docker) transport 25, 47,
235

containers-storage transport 236
container-storage transport 25, 48, 236
Podman and multiple 25
pushing images 46–48

tree command 66
trust command 66
- -tty -(t) option 34, 39
type enforcement, SELinux 207–210

INDEX292
U

uay.io registry 56
UBI (Universal Base Images) 27
Ubuntu 257
$UID environment variable 93
UIDs (user identifiers)

images containing content owned by
multiple 110–117

mount namespace 115–116
user namespace 111–115
user namespace and mount namespace 117

isolation 198–204
isolating containers using - -userns=auto

flag 199
isolating containers using - -userns-auto

flag 199–200
rootless Podman with - -userns=auto flag 202
user namespaced Linux capabilities 201–202
user volumes with - -userns=auto flag 202–204

unconfined label 74
unconfined_t type 209
unmasking masked paths 192–193
unmount command 41, 66
unpause command 41, 86
unqualified-search-registries option 97
untag command 66
update command 249
updates

Fedora 279
rolling back failed containers after 147
systemd timers triggering Podman updates 145

user account 275
useradd

command 112
program 112
tool 104

USER instruction 40, 242
- -username option 49
user namespace 26, 111–115, 117
user namespaced Linux capabilities 201–202
- -userns=auto flag 201–202

isolating containers using 199–200
rootless Podman with 202
user volumes with 202–204

- -user option 33, 163, 170
USER_START audit log entry 219
U volume option 72–73

V

vfs storage driver 95
virtualization technologies 9
VM (virtual machine)

isolation 214–215

starting 267–268
stopping 268

- -volume flag U 203
- -volume HOST-DIR:CONTAINER-DIR option 68
VOLUME instruction 40, 242
volume list command 71
- -volume option 69, 183
volumes 67–74

named volumes 70–72
volume mount options 72–74

SELinux volume options 73–74
U volume option 72–73

- -volume (-v) option 68

W

wait command 42
webdata volume 70
Windows 255–256, 269–280

installing Podman 271–272
prerequisites 270–271
using podman machine 272–279

advanced stopping and restarting 279
listing machines 278
Podman machine init 273–275
Podman machine SSH configuration 275–276
starting WSL 2 instance 276–277
stopping WSL 2 instance 277
updating Fedora 279
using Podman at WSL prompt 278
using podman machine commands 277

Windows remote client 255–256
wsl - -shutdown command 279
wsl - -terminate command 279
WSL (Windows subsystem for Linux) 2.0 256

installation 272
prompt, using Podman at 278
starting 276–277
stopping 277

Windows remote client 255–256
- -workdir command option 82
WORKDIR containerfile instruction 241–242
world permission 113
write syscall 213

Y

yum install tool 238
yum tool 24

Z

zfs storage driver 95
zombie processes 129
z option 72–73, 81

Quick reference

WORKING WITH CONTAINERS
Run a container based on a given image:
 podman run --rm -it [--name name] image:tag command
Create a container from an image:
 podman create [--name name] image:tag
Start an existing container from an image:
 podman start container
Wait on one or more containers to stop:
 podman wait container
Stop a running container gracefully:
 podman stop container
Remove a container:
 podman rm [-f] container
Display a live stream of a container’s resources:
 podman stats container
Return metadata (in JSON) about a running container:
 podman inspect container
List the running containers on the system:
 podman ps [--all]
Execute a command in a running container:
 podman exec container command
Display the running processes of a container:
 podman top container
Display the logs of a container:
 podman logs container
Pause/unpause all the processes in a container:
 podman pause container | podman unpause container
Create a new image based on an existing container:
 podman commit container newImage:tag

WORKING WITH IMAGES
List all local images:
 podman images (podman image list)
Log in to a remote registry:
 podman login registryURL -u username [-p password]
Log out of the current remote registry:
 podman logout
Search local cache and remote registries for images:
 podman search searchString
Pull an image from a remote registry:
 podman pull registry/username/image:tag
Push an image to a remote container registry:
 podman push registry/username/image:tag
Remove images from local storage:
 podman rmi image
Build an image using Containerfile or Dockerfile:
 podman build -t image:tag .
Add an additional name to a local image:
 podman tag image:tag image:tag2

WORKING WITH NETWORKS
Create a network:
 podman network create [netname]
Remove a network:
 podman network rm netname
Connect a network to a container:
 podman network connect netname containername

GENERATING SYSTEMD UNIT FILES FROM CONTAINERS
Generate systemd unit file from a container:
 podman generate systemd --new ctrname > systemd.unit
Start Podman container from within systemd unit file:
 systemctl start [--user] systemd.unit
Auto-update containers:
 systemctl start podman-auto-update

WORKING WITH PODS
Create a pod:
 podman pod create [--name podname]
Create a container within the previously created pod:
 podman create --pod podname image:tag command
Start the pod:
 podman pod start podname
Stop a running pod:
 podman pod stop podname
Remove a pod:
 podman pod rm podname
Display live stream of pod’s containers’ resources:
 podman pod stats podname
Return metadata (in JSON) about pods:
 podman pod inspect podname
Print out information about pods:
 podman pod ps
Display the running processes of the pod’s containers:
 podman top podname
Display the logs of all containers in the pod:
 podman logs podname
Pause/unpause all the processes in the pod:
 podman pod [pause | unpause] podname

MANAGING SYSTEM
Information on environment:
 podman info
Reset storage to initial environment:
 podman system reset
Prune unused Podman resources:
 podman system prune

WORKING WITH VOLUMES
Create a volume:
 podman volume create [volname]
Remove a volume:
 podman volume rm volname
Return metadata (in JSON) about a volume:
 podman volume inspect volname
Print out information about volumes:
 podman volume list
Export a volume to an external tarball:
 podman volume export
Import tarball contents into a podman volume:
 podman volume import

WORKING WITH MACHINES (VMS AND WSL2)
Pull container operating system to run in VM or WSL2:
 podman machine init [--now]
Start VM or WSL2 instance:
 podman machine start
Stop VM or WSL2 instance:
 podman machine stop
Remove a machine:
 podman machine rm

WORKING WITH KUBERNETES YAML
Generate pods listed in the kube.yaml file:
 podman play kube kube.yaml
Generate kube.yaml from pods or containers:
 podman generate kube podname > kube.yaml

WORKING WITH SECRETS
Create a secret:
 podman secret create secretname
Remove a secret:
 podman secret rm secretname

Daniel Walsh

ISBN-13: 978-1-63343-968-9

I
t’s time to upgrade your container engine! Th e Podman
container manager delivers fl exible image layer control,
seamless Kubernetes compatibility, and rootless containers

that can be created, run, and managed by users without admin
rights. Plus, its OCI-compliant support for the Docker API
lets you shift existing containers to Podman without breaking
your scripts or changing the way you work.

Podman in Action introduces the Podman container manager.
Th e easy-to-follow explanations and examples give you a clear
view of what containers are, how they work, and how to man-
age them using Podman’s powerful features. You’ll get a deep
look at the Linux components Podman uses and even learn
more about Docker along the way. You’ll especially appreciate
author Dan Walsh’s unique insights into container security.

What’s Inside
● Develop and manage pods
● Key security concepts including SELinux and SECCOMP
● Use systemd to oversee a container’s lifecycle
● Keep your containers confi ned using Podman security
● Manage containerized applications on edge devices
● Install and run Podman on MacOS and Windows

For developers or system administrators experienced with
Linux and Docker.

Daniel Walsh is a senior distinguished engineer at Red Hat, and
leads the team that created Podman.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

Podman IN ACTION

OPERATIONS / SOFTWARE DEVELOPMENT

M A N N I N G

“Red Hat’s own master of
container security beautifully

explains this important
 container ecosystem.”—Michael Bright

@mjbright Consulting

“Filled to the brim
with examples and
 best practices.”—Mladen Knežić, CROZ

“Showcases Podman’s
architecture, advanced

security features, rootless
containers, integration with
systemd, and much more.
I highly recommend it.”—Andrea Monacchi, Chili.com

“A must-read for anyone
who wants to harness
the power of P odman

and the nextgen container
 ecosystem.”—Gowtham Sadasivam

Acceldata

See first page

	Podman in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	liveBook discussion forum
	Author online

	about the author
	about the cover illustration
	Part 1—Foundations
	1 Podman: A next-generation container engine
	1.1 About all these terms
	1.2 A brief overview of containers
	1.2.1 Container images: A new way to ship software
	1.2.2 Container images lead to microservices
	1.2.3 Container image format
	1.2.4 Container standards

	1.3 Why use Podman when you have Docker?
	1.3.1 Why have only one way to run containers?
	1.3.2 Rootless containers
	1.3.3 Fork/exec model
	1.3.4 Podman is daemonless
	1.3.5 User-friendly command line
	1.3.6 Support for REST API
	1.3.7 Integration with systemd
	1.3.8 Pods
	1.3.9 Customizable registries
	1.3.10 Multiple transports
	1.3.11 Complete customizability
	1.3.12 User-namespace support

	1.4 When not to use Podman
	Summary

	2 Command line
	2.1 Working with containers
	2.1.1 Exploring containers
	2.1.2 Running the containerized application
	2.1.3 Stopping containers
	2.1.4 Starting containers
	2.1.5 Listing containers
	2.1.6 Inspecting containers
	2.1.7 Removing containers
	2.1.8 exec-ing into a container
	2.1.9 Creating an image from a container

	2.2 Working with container images
	2.2.1 Differences between a container and an image
	2.2.2 Listing images
	2.2.3 Inspecting images
	2.2.4 Pushing images
	2.2.5 podman login: Logging into a container registry
	2.2.6 Tagging images
	2.2.7 Removing images
	2.2.8 Pulling images
	2.2.9 Searching for images
	2.2.10 Mounting images

	2.3 Building images
	2.3.1 Format of a Containerfile or Dockerfile
	2.3.2 Automating the building of our application

	Summary

	3 Volumes
	3.1 Using volumes with containers
	3.1.1 Named volumes
	3.1.2 Volume mount options
	3.1.3 podman run - -mount command option

	Summary

	4 Pods
	4.1 Running pods
	4.2 Creating a pod
	4.3 Adding a container to a pod
	4.4 Starting a pod
	4.5 Stopping a pod
	4.6 Listing pods
	4.7 Removing pods
	Summary

	Part 2—Design
	5 Customization and configuration files
	5.1 Configuration files for storage
	5.1.1 Storage location
	5.1.2 Storage drivers

	5.2 Configuration files for registries
	5.2.1 registries.conf

	5.3 Configuration files for engines
	5.4 System configuration files
	Summary

	6 Rootless containers
	6.1 How does rootless Podman work?
	6.1.1 Images contain content owned by multiple user identifiers (UIDs)

	6.2 Rootless Podman under the covers
	6.2.1 Pulling the image
	6.2.2 Creating a container
	6.2.3 Setting up the network
	6.2.4 Starting the container monitor: conmon
	6.2.5 Launching the OCI runtime
	6.2.6 The containerized application runs until completion

	Summary

	Part 3—Advanced topics
	7 Integration with systemd
	7.1 Running systemd within a container
	7.1.1 Containerized systemd requirements
	7.1.2 Podman container in systemd mode
	7.1.3 Running an Apache service within a systemd container

	7.2 Journald for logging and events
	7.2.1 Log driver
	7.2.2 Events

	7.3 Starting containers at boot
	7.3.1 Restarting containers
	7.3.2 Podman containers as systemd services
	7.3.3 Distributing systemd unit files to manage Podman containers
	7.3.4 Automatically updating Podman containers

	7.4 Running containers in notify unit files
	7.5 Rolling back failed containers after update
	7.6 Socket-activated Podman containers
	Summary

	8 Working with Kubernetes
	8.1 Kubernetes YAML files
	8.2 Generating Kubernetes YAML files with Podman
	8.3 Generating Podman pods and containers from Kubernetes YAML
	8.3.1 Shutting down pods and containers based on a Kubernetes YAML file
	8.3.2 Building images using Podman and Kubernetes YAML files

	8.4 Running Podman within a container
	8.4.1 Running Podman within a Podman container
	8.4.2 Running Podman within a Kubernetes pod

	Summary

	9 Podman as a service
	9.1 Introducing the Podman service
	9.1.1 Systemd services

	9.2 Podman-supported APIs
	9.3 Python libraries for interacting with Podman
	9.3.1 Using docker-py with the Podman API
	9.3.2 Using podman-py with the Podman API
	9.3.3 Which Python library should you use?

	9.4 Using docker-compose with the Podman service
	9.5 podman - -remote
	9.5.1 Local connections
	9.5.2 Remote connections
	9.5.3 Setting up SSH on the client machine
	9.5.4 Configuring a connection

	Summary

	Part 4—Container security
	10 Security container isolation
	10.1 Read-only Linux kernel pseudo filesystems
	10.1.1 Unmasking the masked paths
	10.1.2 Masking additional paths

	10.2 Linux capabilities
	10.2.1 Dropped Linux capabilities
	10.2.2 Dropped CAP_SYS_ADMIN
	10.2.3 Dropping capabilities
	10.2.4 Adding capabilities
	10.2.5 No new privileges
	10.2.6 Root with no capabilities is still dangerous

	10.3 UID isolation: User namespace
	10.3.1 Isolating containers using the - -userns=auto flag
	10.3.2 User-namespaced Linux capabilities
	10.3.3 Rootless Podman with the - -userns=auto flag
	10.3.4 User volumes with the - -userns=auto flag

	10.4 Process isolation: PID namespace
	10.5 Network isolation: Network namespace
	10.6 IPC isolation: IPC namespace
	10.7 Filesystem isolation: Mount namespace
	10.8 Filesystem isolation: SELinux
	10.8.1 SELinux type enforcement
	10.8.2 SELinux Multi-Category Security separation

	10.9 System call isolation seccomp
	10.10 Virtual machine isolation
	Summary

	11 Additional security considerations
	11.1 Daemon versus the fork/exec model
	11.1.1 Access to the docker.sock
	11.1.2 Auditing and logging

	11.2 Podman secret handling
	11.3 Podman image trust
	11.3.1 Podman image signing

	11.4 Podman image scanning
	11.4.1 Read-only containers

	11.5 Security in depth
	11.5.1 Podman uses all security mechanisms simultaneously
	11.5.2 Where should you run your containers?

	Summary

	Appendix A—Podman-related container tools
	A.1 Skopeo
	A.2 Buildah
	A.2.1 Creating a working container from a base image
	A.2.2 Adding data to a working container
	A.2.3 Running commands in a working container
	A.2.4 Adding content to a working container directly from the host
	A.2.5 Configuring a working container
	A.2.6 Creating an image from a working container
	A.2.7 Pushing an image to a container registry
	A.2.8 Building an image from Containerfiles
	A.2.9 Buildah as a library

	A.3 CRI-O: Container Runtime Interface for OCI containers

	Appendix B—OCI runtimes
	B.1 runc
	B.2 crun
	B.3 Kata
	B.4 gVisor

	Appendix C—Getting Podman
	C.1 Installing Podman
	C.1.1 macOS
	C.1.2 Windows
	C.1.3 Arch Linux and Manjaro Linux
	C.1.4 CentOS
	C.1.5 Debian
	C.1.6 Fedora
	C.1.7 Fedora-CoreOS, Fedora Silverblue
	C.1.8 Gentoo
	C.1.9 OpenEmbedded
	C.1.10 openSUSE
	C.1.11 openSUSE Kubic
	C.1.12 Raspberry Pi OS arm64
	C.1.13 Red Hat Enterprise Linux
	C.1.14 Ubuntu

	C.2 Building from source code
	C.3 Podman Desktop
	Summary

	Appendix D—Contributing to Podman
	D.1 Joining the community
	D.2 Podman on github.com

	Appendix E—Podman on macOS
	E.1 Using podman machine
	E.1.1 podman machine init
	E.1.2 Podman machine SSH configuration
	E.1.3 Starting the VM
	E.1.4 Stopping the VM

	Summary

	Appendix F—Podman on Windows
	F.1 First steps
	F.1.1 Prerequisites
	F.1.2 Installing Podman

	F.2 Using podman machine
	F.2.1 podman machine init
	F.2.2 Podman machine SSH configuration
	F.2.3 Starting the WSL 2 instance
	F.2.4 Using podman machine commands

	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

